Advertisement

Detection of Nepovirus Vector and Nonvector Xiphinema Species in Grapevine

  • C. Van GhelderEmail author
  • A. Reid
  • D. Kenyon
  • D. Esmenjaud
Part of the Methods in Molecular Biology book series (MIMB, volume 1302)

Abstract

Fanleaf degeneration is considered the most damaging viral disease of grapevine. The two major nepoviruses involved are Grapevine fanleaf virus (GFLV) and Arabis mosaic virus (ArMV) which are respectively and specifically transmitted by the dagger nematodes Xiphinema index and X. diversicaudatum. The methods described below are aimed at detecting four prevalent grapevine Xiphinema species: the vector species previously mentioned and two nonvector species X. vuittenezi and X. italiae.

Key words

ArMV Detection Fanleaf degeneration GFLV Grapevine Nematode Nepovirus Real-time PCR TaqMan® Xiphinema Vector 

Notes

Acknowledgments

This study was made possible by the support of SASA (Science and Advice for Scottish Agriculture) facilities (Edinburgh, Scotland, UK) through the “Diagnostics, Wildlife & Molecular Biology” section.

References

  1. 1.
    Andret-Link P, Laporte C, Valat L et al (2004) Grapevine fanleaf virus: still a major threat to the grapevine industry. J Plant Pathol 86:183–195Google Scholar
  2. 2.
    Demangeat G, Voisin R, Minot JC et al (2005) Survival of Xiphinema index in vineyard soil and retention of Grapevine fanleaf virus over extended time in the absence of host plants. Phytopathology 95:1151–1156PubMedCrossRefGoogle Scholar
  3. 3.
    Esmenjaud D, Walter B, Minot JC et al (1993) Biotin-avidin ELISA detection of Grapevine fanleaf virus in the vector nematode Xiphinema index. J Nematol 25:401–405PubMedCentralPubMedGoogle Scholar
  4. 4.
    Demangeat G, Komar V, Cornuet P et al (2004) Sensitive and reliable detection of Grapevine fanleaf virus in a single Xiphinema index nematode vector. J Virol Methods 122:79–86PubMedCrossRefGoogle Scholar
  5. 5.
    Finetti-Sialer MM, Ciancio A (2005) Isolate-specific detection of Grapevine fanleaf virus from Xiphinema index through DNA-based molecular probes. Phytopathology 95:262–268PubMedCrossRefGoogle Scholar
  6. 6.
    European and Mediterranean Plant Protection Organization (2009) Soil test for virus-vector nematodes in the framework of EPPO Standard PM 4 Schemes for the production of healthy plants for planting of fruit crops, grapevine, Populus and Salix. Bulletin OEPP/EPPO Bulletin 39:284–288CrossRefGoogle Scholar
  7. 7.
    Taylor CE, Brown DJF (1997) Nematode vectors of plant viruses. Geographical distribution of Longidoridae. CAB International, Wallingford, UKGoogle Scholar
  8. 8.
    Harrison BD, Cadman CH (1959) Role of a dagger nematode (Xiphinema sp.) in out breaks of plant disease caused by Arabis mosaic virus. Nature 184:1624–1626Google Scholar
  9. 9.
    Martelli GP, Saropataki G (1969) Nematodes of the family Longidoridae (Thorne, 1935) Meyl, 1960 found in Hungarian vineyards and virus transmission trials with Xiphinema index Thorne et allen. Phytopathol Mediterr 8:1–7Google Scholar
  10. 10.
    Dalmasso A (1970) Influence directe de quelques facteurs écologiques sur l’activité biologique et la distribution des espèces françaises de la famille des Longidoridae (Dorylaimida). Ann Zool Ecol Anim 2:163–200Google Scholar
  11. 11.
    Hillis DM, Dixon MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 66:411–453PubMedCrossRefGoogle Scholar
  12. 12.
    Vaerman JL, Saussoy P, Ingargiola I (2004) Evaluation of real-time PCR data. J Biol Regul Homeost Agents 18:212–214PubMedGoogle Scholar
  13. 13.
    Blaxter M (1998) Caenorhabditis elegans is a nematode. Science 282:2041–2046PubMedCrossRefGoogle Scholar
  14. 14.
    Schellenberger P, Sauter C, Lorber B et al (2011) Structural insights into viral determinants of nematode mediated Grapevine fanleaf virus transmission. PLoS Pathog 7(5):e1002034PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • C. Van Ghelder
    • 1
    • 2
    • 3
    Email author
  • A. Reid
    • 4
  • D. Kenyon
    • 4
  • D. Esmenjaud
    • 1
    • 2
    • 3
  1. 1.INRA, UMR 1355 Institut Sophia AgrobiotechSophia AntipolisFrance
  2. 2.Univ. Nice Sophia Antipolis, UMR 7254 Institut Sophia AgrobiotechSophia AntipolisFrance
  3. 3.CNRS, UMR 7254 Institut Sophia AgrobiotechSophia AntipolisFrance
  4. 4.Diagnostics, Wildlife & Molecular BiologyScience and Advice for Scottish AgricultureEdinburghUK

Personalised recommendations