Advertisement

Rab GTPases pp 29-45 | Cite as

Rab-NANOPS: FRET Biosensors for Rab Membrane Nanoclustering and Prenylation Detection in Mammalian Cells

  • Arafath Kaja Najumudeen
  • Camilo Guzmán
  • Itziar M. D. Posada
  • Daniel AbankwaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1298)

Abstract

Rab proteins constitute the largest subfamily of Ras-like small GTPases. They are central to vesicular transport and organelle definition in eukaryotic cells. Unlike their Ras counterparts, they are not a hallmark of cancer. However, a number of diseases, including cancer, show a misregulation of Rab protein activity. As for all membrane-anchored signaling proteins, correct membrane organization is critical for Rabs to operate. In this chapter, we provide a detailed protocol for the use of a flow cytometry-based Fluorescence Resonance Energy Transfer (FRET)-biosensors assay, which allows to detect changes in membrane anchorage, subcellular distribution, and of the nanoscale organization of Rab-GTPases in mammalian cell lines. This assay is high-throughput amenable and can therefore be utilized in chemical-genomic and drug discovery efforts.

Key words

Rab GTPase Geranylgeranylation FRET Flow cytometry Nanocluster Trafficking Membrane Drug discovery 

References

  1. 1.
    Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731CrossRefPubMedGoogle Scholar
  2. 2.
    Simons K, van Meer G (1988) Lipid sorting in epithelial cells. Biochemistry 27:6197–6202CrossRefPubMedGoogle Scholar
  3. 3.
    Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572. doi: 10.1038/42408 CrossRefPubMedGoogle Scholar
  4. 4.
    Hancock JF (2006) Lipid rafts: contentious only from simplistic standpoints. Nat Rev Mol Cell Biol 7:456–462. doi: 10.1038/nrm1925 CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Eggeling C, Ringemann C, Medda R et al (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457:1159–1162. doi: 10.1038/nature07596 CrossRefPubMedGoogle Scholar
  6. 6.
    Mueller V, Ringemann C, Honigmann A et al (2011) STED Nanoscopy Reveals Molecular Details of Cholesterol- and Cytoskeleton-Modulated Lipid Interactions in Living Cells. Biophys J 101:1651–1660. doi: 10.1016/j.bpj.2011.09.006 CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Varma R, Mayor S (1998) GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394:798–801. doi: 10.1038/29563 CrossRefPubMedGoogle Scholar
  8. 8.
    Sharma P, Varma R, Sarasij RC et al (2004) Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116:577–589CrossRefPubMedGoogle Scholar
  9. 9.
    Goswami D, Gowrishankar K, Bilgrami S et al (2008) Nanoclusters of GPI-anchored proteins are formed by cortical actin-driven activity. Cell 135:1085–1097. doi: 10.1016/j.cell.2008.11.032 CrossRefPubMedGoogle Scholar
  10. 10.
    Prior IA, Harding A, Yan J et al (2001) GTP-dependent segregation of H-ras from lipid rafts is required for biological activity. Nat Cell Biol 3:368–375. doi: 10.1038/35070050 CrossRefPubMedGoogle Scholar
  11. 11.
    Parton RG, Hancock JF (2004) Lipid rafts and plasma membrane microorganization: insights from Ras. Trends Cell Biol 14:141–147. doi: 10.1016/j.tcb.2004.02.001 CrossRefPubMedGoogle Scholar
  12. 12.
    Abankwa D, Gorfe AA, Hancock JF (2007) Ras nanoclusters: molecular structure and assembly. Semin Cell Dev Biol 18:599–607. doi: 10.1016/j.semcdb.2007.08.003 CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Plowman SJ, Muncke C, Parton RG, Hancock JF (2005) H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton. Proc Natl Acad Sci U S A 102:15500–15505. doi: 10.1073/pnas.0504114102 CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Zhou Y, Liang H, Rodkey T et al (2014) Signal Integration by Lipid-Mediated Spatial Cross Talk between Ras Nanoclusters. Mol Cell Biol 34:862–876. doi: 10.1128/MCB. 01227-13 CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Tian T, Harding A, Inder K et al (2007) Plasma membrane nanoswitches generate high-fidelity Ras signal transduction. Nat Cell Biol 9:905–914. doi: 10.1038/ncb1615 CrossRefPubMedGoogle Scholar
  16. 16.
    Murakoshi H, Iino R, Kobayashi T et al (2004) Single-molecule imaging analysis of Ras activation in living cells. Proc Natl Acad Sci U S A 101:7317–7322. doi: 10.1073/pnas.0401354101 CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Hibino K, Watanabe TM, Kozuka J et al (2003) Single- and Multiple-Molecule Dynamics of the Signaling from H-Ras to cRaf-1 Visualized on the Plasma Membrane of Living Cells. ChemPhysChem 4:748–753. doi: 10.1002/cphc.200300731 CrossRefPubMedGoogle Scholar
  18. 18.
    Guzmán C, Šolman M, Ligabue A et al (2014) The efficacy of Raf kinase recruitment to the GTPase H-ras depends on H-ras membrane conformer specific nanoclustering. J Biol Chem. doi: 10.1074/jbc.M113.537001 Google Scholar
  19. 19.
    Prior IA, Muncke C, Parton RG, Hancock JF (2003) Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J Cell Biol 160:165–170. doi: 10.1083/jcb.200209091 CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Rotblat B, Belanis L, Liang H et al (2010) H-Ras nanocluster stability regulates the magnitude of MAPK signal output. PLoS One 5:e11991. doi: 10.1371/journal.pone.0011991 CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Belanis L, Plowman SJ, Rotblat B et al (2008) Galectin-1 is a novel structural component and a major regulator of H-Ras nanoclusters. Mol Biol Cell 19:1404–1414. doi: 10.1091/mbc.E07-10-1053 CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Shalom-Feuerstein R, Plowman SJ, Rotblat B et al (2008) K-ras nanoclustering is subverted by overexpression of the scaffold protein galectin-3. Cancer Res 68:6608–6616. doi: 10.1158/0008-5472.CAN-08-1117 CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Cho K-J, Kasai RS, Park J-H et al (2012) Raf inhibitors target ras spatiotemporal dynamics. Curr Biol 22:945–955. doi: 10.1016/j.cub.2012.03.067 CrossRefPubMedGoogle Scholar
  24. 24.
    Abankwa D, Hanzal-Bayer M, Ariotti N et al (2008) A novel switch region regulates H-ras membrane orientation and signal output. EMBO J 27:727–735. doi: 10.1038/emboj.2008.10 CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Köhnke M, Schmitt S, Ariotti N et al (2012) Design and Application of In Vivo FRET Biosensors to Identify Protein Prenylation and Nanoclustering Inhibitors. Chem Biol 19:866–874. doi: 10.1016/j.chembiol.2012.05.019 CrossRefPubMedGoogle Scholar
  26. 26.
    Cho K-J, Park J-H, Piggott AM et al (2012) Staurosporines disrupt phosphatidylserine trafficking and mislocalize Ras proteins. J Biol Chem 287:43573–43584. doi: 10.1074/jbc.M112.424457 CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Zhou Y, Plowman SJ, Lichtenberger LM, Hancock JF (2010) The Anti-inflammatory Drug Indomethacin Alters Nanoclustering in Synthetic and Cell Plasma Membranes. J Biol Chem 285:35188–35195. doi: 10.1074/jbc.M110.141200 CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Zhou Y, Cho K-J, Plowman SJ, Hancock JF (2012) Nonsteroidal anti-inflammatory drugs alter the spatiotemporal organization of Ras proteins on the plasma membrane. J Biol Chem 287:16586–16595. doi: 10.1074/jbc.M112.348490 CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Abankwa D, Vogel H (2007) A FRET map of membrane anchors suggests distinct microdomains of heterotrimeric G proteins. J Cell Sci 120:2953–2962. doi: 10.1242/jcs.001404 CrossRefPubMedGoogle Scholar
  30. 30.
    Crouthamel M, Abankwa D, Zhang L et al (2010) An N-terminal polybasic motif of Gαq is required for signaling and influences membrane nanodomain distribution. Mol Pharmacol 78:767–777. doi: 10.1124/mol.110.066340 CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Najumudeen AK, Köhnke M, Šolman M et al (2013) Cellular FRET-Biosensors to Detect Membrane Targeting Inhibitors of N-Myristoylated Proteins. PLoS One 8:e66425. doi: 10.1371/journal.pone.0066425.s007 CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Goody RS, Rak A, Alexandrov K (2005) The structural and mechanistic basis for recycling of Rab proteins between membrane compartments. Cell Mol Life Sci 62:1657–1670. doi: 10.1007/s00018-005-4486-8 CrossRefPubMedGoogle Scholar
  33. 33.
    Nguyen UT, Goodall A, Alexandrov K, Abankwa D (2010) Isoprenoid Modifications. In: Vidal CJ (ed) Post-Translational Modifications in Health and Disease, 1st edn. Springer, New York, p 486Google Scholar
  34. 34.
    Alexandrov K, Horiuchi H, Steele-Mortimer O et al (1994) Rab escort protein-1 is a multifunctional protein that accompanies newly prenylated rab proteins to their target membranes. EMBO J 13:5262–5273PubMedCentralPubMedGoogle Scholar
  35. 35.
    Li F, Yi L, Zhao L et al (2014) The role of the hypervariable C-terminal domain in Rab GTPases membrane targeting. Proc Natl Acad Sci U S A 111:2572–2577. doi: 10.1073/pnas.1313655111 CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Seabra MC, Mules EH, Hume AN (2002) Rab GTPases, intracellular traffic and disease. Trends Mol Med 8:23–30CrossRefPubMedGoogle Scholar
  37. 37.
    Recchi C, Seabra MC (2012) Novel functions for Rab GTPases in multiple aspects of tumour progression. Biochem Soc Trans 40:1398–1403. doi: 10.1016/S1471-4914(01)02227-4 CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Baron RA, Tavaré R, Figueiredo AC et al (2009) Phosphonocarboxylates inhibit the second geranylgeranyl addition by Rab geranylgeranyl transferase. J Biol Chem 284:6861–6868. doi: 10.1074/jbc.M806952200 CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Lackner MR, Kindt RM, Carroll PM et al (2005) Chemical genetics identifies Rab geranylgeranyl transferase as an apoptotic target of farnesyl transferase inhibitors. Cancer Cell 7:325–336. doi: 10.1016/j.ccr.2005.03.024 CrossRefPubMedGoogle Scholar
  40. 40.
    Coxon FP, Ebetino FH, Mules EH et al (2005) Phosphonocarboxylate inhibitors of Rab geranylgeranyl transferase disrupt the prenylation and membrane localization of Rab proteins in osteoclasts in vitro and in vivo. Bone 37:349–358. doi: 10.1016/j.bone.2005.04.021 CrossRefPubMedGoogle Scholar
  41. 41.
    Bon RS, Guo Z, Stigter EA et al (2011) Structure-Guided Development of Selective RabGGTase Inhibitors. Angew Chem Int Ed 50:4957–4961. doi: 10.1002/anie.201101210 CrossRefGoogle Scholar
  42. 42.
    Watanabe M, Fiji HDG, Guo L et al (2008) Inhibitors of protein geranylgeranyltransferase I and Rab geranylgeranyltransferase identified from a library of allenoate-derived compounds. J Biol Chem 283:9571–9579. doi: 10.1074/jbc.M706229200 CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Prior IA, Parton RG, Hancock JF (2003) Observing cell surface signaling domains using electron microscopy. Sci STKE 2003:PL9PubMedGoogle Scholar
  44. 44.
    Zimet DB, Thevenin BJ, Verkman AS et al (1995) Calculation of resonance energy transfer in crowded biological membranes. Biophys J 68:1592–1603. doi: 10.1016/S0006-3495(95)80332-2 CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Berney C, Danuser G (2003) FRET or no FRET: A quantitative comparison. Biophys J 84:3992–4010CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Wolber PK, Hudson BS (1979) An analytic solution to the Förster energy transfer problem in two dimensions. Biophys J 28:197–210CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Gordon GW, Berry G, Liang XH et al (1998) Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys J 74:2702CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Zacharias DA, Violin JD, Newton AC, Tsien RY (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296:913–916CrossRefPubMedGoogle Scholar
  49. 49.
    Zhang J, Campbell RE, Ting AY, Tsien RY (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3:906–918. doi: 10.1038/nrm976 CrossRefPubMedGoogle Scholar
  50. 50.
    Griesbeck O, Baird GS, Campbell RE et al (2001) Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem 276:29188–29194. doi: 10.1074/jbc.M102815200 CrossRefPubMedGoogle Scholar
  51. 51.
    Coxon FP, Helfrich MH, Larijani B et al (2001) Identification of a novel phosphonocarboxylate inhibitor of Rab geranylgeranyl transferase that specifically prevents Rab prenylation in osteoclasts and macrophages. J Biol Chem 276:48213–48222. doi: 10.1074/jbc.M106473200 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Arafath Kaja Najumudeen
    • 1
  • Camilo Guzmán
    • 1
  • Itziar M. D. Posada
    • 1
  • Daniel Abankwa
    • 1
    Email author
  1. 1.Turku Centre for BiotechnologyÅbo Akademi UniversityTurkuFinland

Personalised recommendations