Advertisement

Rab GTPases pp 245-258 | Cite as

Methods for Analysis of AP-3/Rabin4’ in Regulation of Lysosome Distribution

  • Viorica Ivan
  • Peter van der Sluijs
Part of the Methods in Molecular Biology book series (MIMB, volume 1298)

Abstract

The position of lysosomes in the cytoplasm is important for their ability to fuse with the plasma membrane and release of proteases that are involved in tissue remodeling. Motor-directed bidirectional transport along microtubules is a critical process determining the distribution of lysosomes. How lysosomes are tethered to microtubules is incompletely understood, but a role for small GTPases of rab and arl families has been documented. We recently found that the rab5 and rab4 effector rabip4′ interacts with the adaptor complex AP-3 in a rab4-dependent manner on tubular endosomes. We here describe the assays that led to the identification of AP-3 as a rabip4′ partner and the role of the complex in regulating the spatial distribution of lysosomes.

Key words

rabip4/rabip4′ AP-3 complex Lysosomes Microtubules 

Notes

Acknowledgments

This research was supported by grant UEFISCDI PNII-RU 122/2010 (VI) and the Netherlands Organization for Scientific Research NWO-CW (PvdS).

References

  1. 1.
    Luzio JP, Pryor PR, Bright NA (2007) Lysosomes: fusion and function. Nat Rev Mol Cell Biol 8:622–632CrossRefPubMedGoogle Scholar
  2. 2.
    Settembre C, Fraldi A, Medina DL, Ballabio A (2013) Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol 14:283–296CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Marks MS, Heijnen HF, Raposo G (2013) Lysosome-related organelles: unusual compartments become mainstream. Curr Opin Cell Biol 25:495–505CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Hendricks AG, Perlson E, Ross JL, Schroeder HW, Tokito M, Holzbauer ELF (2010) Motor coordination via a tug of war mechanism drives bidirectional vesicle transport. Curr Biol 20:697–702CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Rosa-Ferreira C, Munro S (2011) Arl8 and SKIP act together to link lysosomes to kinesin-1. Dev Cell 21:1171–1178CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Fouraux M, Deneka M, Ivan V, van der Heijden A, Raymackers J, van Suylekom D, van Venrooij WJ, van der Sluijs P, Pruijn GJM (2004) rabip4’ is an effector of rab5 and rab4 and regulates transport through early endosomes. Mol Biol Cell 15:611–624CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Cormont M, Mari M, Galmiche A, Hofman P, Le Marchand-Brustel Y (2001) A FYVE finger-containing protein, rabip4, is a rab4 effector protein involved in early endosomal traffic. Proc Natl Acad Sci U S A 98:1637–1642CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Theos AC, Tenza D, Martina JA, Hurbain I, Peden AA, Sviderskaya EV, Stewart A, Robinson MS, Bennett DC, Cutler DF et al (2005) Functions of adaptor protein AP-3 and AP-1 in tyrosinase sorting from endosomes to melanosomes. Mol Biol Cell 16:5356–5372CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Peden AA, Oorschot V, Hesser BA, Austin CD, Scheller RH, Klumperman J (2004) Localization of the AP-3 adaptor complex defines a novel endosomal exit site for lysosomal membrane proteins. J Cell Biol 164:1065–1076CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Dell’Angelica EC, Shotelersuk V, Aguilar RC, Gahl WA, Bonifacino JS (1999) Altered trafficking of lysosomal proteins in Hermansky-Pudlak syndrome due to mutations in the beta3A subunit of the AP-3 adaptor. Mol Cell 3:11–21CrossRefPubMedGoogle Scholar
  11. 11.
    Clark RH, Stinchcombe JC, Day A, Blott E, Booth S, Bossi G, Hamblin T, Davies EG, Griffiths GM (2003) Adaptor protein 3-dependent microtubule mediated movement of lytic granules to the immunological synapse. Nat Immunol 4:1111–1120CrossRefPubMedGoogle Scholar
  12. 12.
    Deneka M, Neeft M, Popa I, van Oort M, Sprong H, Oorschot V, Klumperman J, Schu P, van der Sluijs P (2003) rabaptin-5a/rabaptin-4 serves as a linker between rab4 and γ1-adaptin in membrane recycling from endosomes. EMBO J 22:2645–2657CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Hoogenraad CC, Popa I, Futai K, Martinez-Sanchez E, Wulf PS, van Vlijmen T, Dortland B, Oorschot V, Govers R, Monti M et al (2010) Neuron specific rab4 effector GRASP-1 coordinates membrane specialization and maturation of recycling endosomes. PLoS Biol 8:e1000283CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Yang J, Kim O, Qiu Y (2002) Interaction between tyrosine kinase Etk and a RUN domain and FYVE domain containing protein RUFY1. J Biol Chem 277:30219–30226CrossRefPubMedGoogle Scholar
  15. 15.
    Yatsuda AP, Krijgsveld J, Cornelissen AW, Heck AJ, de Vries E (2003) Comprehensive analysis of the secreted proteins of the parasite Haemonchus contortus reveals extensive sequence variation and differential immune recognition. J Biol Chem 278:16941–16951CrossRefPubMedGoogle Scholar
  16. 16.
    Ivan V, Martinez-Sanchez W, Sima LE, Oorschot V, Klumperman J, Petrescu SM, van der Sluijs P (2012) AP-3 and Rabip4' coordinately regulate spatial distribution of lysosomes. PLoS One 7:e48142CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Molecular Cell BiologyInstitute of Biochemistry of the Romanian AcademyBucharestRomania
  2. 2.Department of Cell BiologyUniversity Medical Center UtrechtUtrechtThe Netherlands

Personalised recommendations