Multiple Approaches for the Investigation of Bacterial Small Regulatory RNAs Self-assembly

  • Christophe Lavelle
  • Florent Busi
  • Véronique Arluison
Part of the Methods in Molecular Biology book series (MIMB, volume 1297)


RNAs are flexible molecules involved in a multitude of roles in the cell. Specifically, noncoding RNAs (i.e., RNAs that do not encode a protein) have important functions in the regulation of biological processes such as RNA decay, translation, or protein translocation. In bacteria, most of those noncoding RNAs have been shown to be critical for posttranscriptional control through their binding to the untranslated regions of target mRNAs. Recent evidence shows that some of these noncoding RNAs have the propensity to self-assemble in prokaryotes. Although the function of this self-assembly is not known and may vary from one RNA to another, it offers new insights into riboregulation pathways. We present here the various approaches that can be used for the detection and analysis of bacterial small noncoding RNA self-assemblies.

Key words

Small noncoding RNA Posttranscriptional control Nucleic acid self-assembly RNA nanostructure 



Atomic force microscopy


Base pair


Fourier transform infrared spectroscopy


Noncoding RNA




Polyacrylamide gel electrophoresis


RNA polymerase

ss/ds RNA

Single- or double-stranded RNA


Small regulatory RNA


Transmission electron microscopy


Melting temperature



This work was supported by the CNRS, CEA, and University Paris Diderot. We are particularly grateful to B. Cayrol (Leon Brillouin and AGAP Labs.), F. Geinguenaud (U. Paris 13), J. Teixeira (Leon Brillouin Lab), Olivier Piétrement (Gustave Roussy Institute and U. Paris 11), G. Wegrzyn (U. of Gdansk, Poland), Anthony Bugaut (National Museum of Natural History, Paris), and N. Linder (U. of Cergy-Pontoise) for their help in preparing this manuscript or for its critical reading.


  1. 1.
    Wei B, Dai M, Yin P (2012) Complex shapes self-assembled from single-stranded DNA tiles. Nature 485:623–626CrossRefGoogle Scholar
  2. 2.
    Li X, Zhang C, Hao C, Tian C, Wang G, Mao C (2012) DNA polyhedra with T-linkage. ACS Nano 6:5138–5142CrossRefGoogle Scholar
  3. 3.
    Afonin KA, Bindewald E, Yaghoubian AJ, Voss N, Jacovetty E, Shapiro BA, Jaeger L (2010) In vitro assembly of cubic RNA-based scaffolds designed in silico. Nat Nanotechnol 5:676–682CrossRefGoogle Scholar
  4. 4.
    Chang KY, Tinoco I Jr (1994) Characterization of a “kissing” hairpin complex derived from the human immunodeficiency virus genome. Proc Natl Acad Sci U S A 91:8705–8709CrossRefGoogle Scholar
  5. 5.
    Chen C, Zhang C, Guo P (1999) Sequence requirement for hand-in-hand interaction in formation of RNA dimers and hexamers to gear phi29 DNA translocation motor. RNA 5:805–818CrossRefGoogle Scholar
  6. 6.
    Ferrandon D, Koch I, Westhof E, Nusslein-Volhard C (1997) RNA-RNA interaction is required for the formation of specific bicoid mRNA 3′ UTR-STAUFEN ribonucleoprotein particles. EMBO J 16:1751–1758CrossRefGoogle Scholar
  7. 7.
    Wagner C, Ehresmann C, Ehresmann B, Brunel C (2004) Mechanism of dimerization of bicoid mRNA: initiation and stabilization. J Biol Chem 279:4560–4569CrossRefGoogle Scholar
  8. 8.
    Cayrol B, Geinguenaud F, Lacoste J, Busi F, Le Derout J, Pietrement O, Le Cam E, Regnier P, Lavelle C, Arluison V (2009) Auto-assembly of E. coli DsrA small noncoding RNA: Molecular characteristics and functional consequences. RNA Biol 6:434–445CrossRefGoogle Scholar
  9. 9.
    Guo P (2010) The emerging field of RNA nanotechnology. Nat Nanotechnol 5(12):833–842CrossRefGoogle Scholar
  10. 10.
    Lease RA, Arluison V, Lavelle C (2012) Twins, quadruplexes, and more: functional aspects of native and engineered RNA self-assembly. Front Life Sci 6:19–32CrossRefGoogle Scholar
  11. 11.
    Jaeger L, Chworos A (2006) The architectonics of programmable RNA and DNA nanostructures. Curr Opin Struct Biol 16:531–543CrossRefGoogle Scholar
  12. 12.
    Nasalean L, Baudrey S, Leontis NB, Jaeger L (2006) Controlling RNA self-assembly to form filaments. Nucleic Acids Res 34:1381–1392CrossRefGoogle Scholar
  13. 13.
    Afonin KA, Grabow WW, Walker FM, Bindewald E, Dobrovolskaia MA, Shapiro BA, Jaeger L (2011) Design and self-assembly of siRNA-functionalized RNA nanoparticles for use in automated nanomedicine. Nat Protoc 6:2022–2034CrossRefGoogle Scholar
  14. 14.
    Patil VS, Zhou R, Rana TM (2013) Gene regulation by non-coding RNAs. Crit Rev Biochem Mol Biol 49(1):16–32CrossRefGoogle Scholar
  15. 15.
    Storz G, Vogel J, Wassarman KM (2011) Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 43:880–891CrossRefGoogle Scholar
  16. 16.
    Vanderpool CK (2007) Physiological consequences of small RNA-mediated regulation of glucose-phosphate stress. Curr Opin Microbiol 10:146–151CrossRefGoogle Scholar
  17. 17.
    Lenz DH, Mok KC, Lilley BN, Kulkarni RV, Wingreen NS, Bassler BL (2004) The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118:69–82CrossRefGoogle Scholar
  18. 18.
    Gripenland J, Netterling S, Loh E, Tiensuu T, Toledo-Arana A, Johansson J (2010) RNAs: regulators of bacterial virulence. Nat Rev Microbiol 8:857–866CrossRefGoogle Scholar
  19. 19.
    Storz G, Opdyke JA, Zhang A (2004) Controlling mRNA stability and translation with small, noncoding RNAs. Curr Opin Microbiol 7:140–144CrossRefGoogle Scholar
  20. 20.
    Gottesman S, Storz G (2011) Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb Perspect Biol 3:a003798CrossRefGoogle Scholar
  21. 21.
    Wassarman KM (2007) 6S RNA: a small RNA regulator of transcription. Curr Opin Microbiol 10:164–168CrossRefGoogle Scholar
  22. 22.
    Busi F, Cayrol B, Lavelle C, LeDerout J, Pietrement O, Le Cam E, Geinguenaud F, Lacoste J, Regnier P, Arluison V (2009) Auto-assembly as a new regulatory mechanism of noncoding RNA. Cell Cycle 8:952–954CrossRefGoogle Scholar
  23. 23.
    Lease RA, Woodson SA (2004) Cycling of the Sm-like protein Hfq on the DsrA small regulatory RNA. J Mol Biol 344:1211–1223CrossRefGoogle Scholar
  24. 24.
    Guantes R, Cayrol B, Busi F, Arluison V (2012) Positive regulatory dynamics by a small noncoding RNA: speeding up responses under temperature stress. Mol Biosyst 8:1707–1715CrossRefGoogle Scholar
  25. 25.
    Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci U S A 81:1991–1995CrossRefGoogle Scholar
  26. 26.
    Sclavi B, Zaychikov E, Rogozina A, Walther F, Buckle M, Heumann H (2005) Real-time characterization of intermediates in the pathway to open complex formation by Escherichia coli RNA polymerase at the T7A1 promoter. Proc Natl Acad Sci U S A 102:4706–4711CrossRefGoogle Scholar
  27. 27.
    Majdalani N, Cunning C, Sledjeski D, Elliott T, Gottesman S (1998) DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription. Proc Natl Acad Sci U S A 95:12462–12467CrossRefGoogle Scholar
  28. 28.
    Lease RA, Cusick ME, Belfort M (1998) Riboregulation in Escherichia coli: DsrA RNA acts by RNA:RNA interactions at multiple loci. Proc Natl Acad Sci U S A 95:12456–12461CrossRefGoogle Scholar
  29. 29.
    Gruber AR, Lorenz R, Bernhart SH, Neubock R, Hofacker IL (2008) The Vienna RNA Websuite. Nucleic Acids Res 36:W70–W74CrossRefGoogle Scholar
  30. 30.
    Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415CrossRefGoogle Scholar
  31. 31.
    Clarke PA (1999) RNA footprinting and modification interference analysis. Methods Mol Biol 118:73–91Google Scholar
  32. 32.
    Lease RA, Belfort M (2000) A trans-acting RNA as a control switch in Escherichia coli: DsrA modulates function by forming alternative structures. Proc Natl Acad Sci U S A 97:9919–9924CrossRefGoogle Scholar
  33. 33.
    Rolle K, Zywicki M, Wyszko E, Barciszewska MZ, Barciszewski J (2006) Evaluation of the dynamic structure of DsrA RNA from E. coli and its functional consequences. J Biochem 139:431–438CrossRefGoogle Scholar
  34. 34.
    Nakano S, Kirihata T, Fujii S, Sakai H, Kuwahara M, Sawai H, Sugimoto N (2007) Influence of cationic molecules on the hairpin to duplex equilibria of self-complementary DNA and RNA oligonucleotides. Nucleic Acids Res 35:486–494CrossRefGoogle Scholar
  35. 35.
    Sun X, Li JM, Wartell RM (2007) Conversion of stable RNA hairpin to a metastable dimer in frozen solution. RNA 13:2277–2286CrossRefGoogle Scholar
  36. 36.
    Tsuboi M (1969) Application of infrared spectroscopy to structure studies of nucleic acids. In: Brame EGJ (ed) Applied spectroscopy reviews. Dekker, New York, pp 45–90Google Scholar
  37. 37.
    Liquier J, Taillandier E (1996) Infrared spectroscopy of nucleic acids. In: Mantsch HH, Chapman D (eds) Infrared spectroscopy of Biomolecules. Wiley, New York, pp 131–158Google Scholar
  38. 38.
    Taillandier E, Liquier J (2002) Vibrationnal spectroscopy of nucleic acids. In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy. Wiley, New York, pp 3465–3480Google Scholar
  39. 39.
    Varani G, McClain WH (2000) The G × U wobble base pair. A fundamental building block of RNA structure crucial to RNA function in diverse biological systems. EMBO Rep 1:18–23CrossRefGoogle Scholar
  40. 40.
    Ebel S, Brown T, Lane AN (1994) Thermodynamic stability and solution conformation of tandem G.A. mismatches in RNA and RNA.DNA hybrid duplexes. Eur J Biochem 220:703–715CrossRefGoogle Scholar
  41. 41.
    Veaute X, Jeusset J, Soustelle C, Kowalczykowski SC, Le Cam E, Fabre F (2003) The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423:309–312CrossRefGoogle Scholar
  42. 42.
    Hamon L, Pastre D, Dupaigne P, Le Breton C, Le Cam E, Pietrement O (2007) High-resolution AFM imaging of single-stranded DNA-binding (SSB) protein-DNA complexes. Nucleic Acids Res 35:e58CrossRefGoogle Scholar
  43. 43.
    Beloin C, Jeusset J, Revet B, Mirambeau G, Le Hegarat F, Le Cam E (2003) Contribution of DNA conformation and topology in right-handed DNA wrapping by the Bacillus subtilis LrpC protein. J Biol Chem 278:5333–5342CrossRefGoogle Scholar
  44. 44.
    Revet B, Fourcade A (1998) Short unligated sticky ends enable the observation of circularised DNA by atomic force and electron microscopies. Nucleic Acids Res 26:2092–2097CrossRefGoogle Scholar
  45. 45.
    Zarzosa-Alvarez AL, Sandoval-Cabrera A, Torres-Huerta AL, Bermudez-Cruz RM (2010) Electroeluting DNA fragments. J Vis Exp 43:2136Google Scholar
  46. 46.
    Banyay M, Sarkar M, Graslund A (2003) A library of IR bands of nucleic acids in solution. Biophys Chem 104(2):477–488CrossRefGoogle Scholar
  47. 47.
    Geinguenaud F, Gesson M, Arluison V (2014) Thermodynamic aspects of the self-assembly of DsrA, a small noncoding RNA from Escherichia coli. Acta Biochim Pol 61:179–184Google Scholar
  48. 48.
    Eilebrecht S, Brysbaert G, Wegert T, Urlaub H, Benecke BJ, Benecke A (2011) 7SK small nuclear RNA directly affects HMGA1 function in transcription regulation. Nucleic Acids Res 39:2057–2072CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Christophe Lavelle
    • 1
    • 2
  • Florent Busi
    • 3
    • 4
  • Véronique Arluison
    • 2
    • 3
    • 5
  1. 1.National Museum of Natural HistoryCNRS UMR7196/INSERM U1154ParisFrance
  2. 2.Nuclear Architecture and DynamicsCNRS GDR3536ParisFrance
  3. 3.Univ Paris Diderot-Paris 7ParisFrance
  4. 4.Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRSParisFrance
  5. 5.Laboratoire Léon BrillouinUMR12 CEA/CNRS, CEA—Centre de SaclayGif-sur-Yvette CedexFrance

Personalised recommendations