Advertisement

Overview of Methods in RNA Nanotechnology: Synthesis, Purification, and Characterization of RNA Nanoparticles

  • Farzin HaqueEmail author
  • Peixuan Guo
Part of the Methods in Molecular Biology book series (MIMB, volume 1297)

Abstract

RNA nanotechnology encompasses the use of RNA as a construction material to build homogeneous nanostructures by bottom-up self-assembly with defined size, structure, and stoichiometry; this pioneering concept demonstrated in 1998 (Guo et al., Molecular Cell 2:149–155, 1998; featured in Cell) has emerged as a new field that also involves materials engineering and synthetic structural biology (Guo, Nature Nanotechnology 5:833–842, 2010). The field of RNA nanotechnology has skyrocketed over the last few years, as evidenced by the burst of publications in prominent journals on RNA nanostructures and their applications in nanomedicine and nanotechnology. Rapid advances in RNA chemistry, RNA biophysics, and RNA biology have created new opportunities for translating basic science into clinical practice. RNA nanotechnology holds considerable promise in this regard. Increased evidence also suggests that substantial part of the 98.5 % of human genome (Lander et al. Nature 409:860–921, 2001) that used to be called “junk DNA” actually codes for noncoding RNA. As we understand more on how RNA structures are related to function, we can fabricate synthetic RNA nanoparticles for the diagnosis and treatment of diseases. This chapter provides a brief overview of the field regarding the design, construction, purification, and characterization of RNA nanoparticles for diverse applications in nanotechnology and nanomedicince.

Key words

RNA nanotechnology Nanomedicine Nanobiotechnology RNA therapeutics RNA nanoparticle pRNA Bacteriophage phi29 Ultracentrifugation PAGE HPLC AFM 

Notes

Acknowledgements

The research was supported by NIH grants R01-EB003730 and U01-CA151648 to P.G. The content is solely the responsibility of the authors and does not necessarily represent the official views of NIH. Funding to Peixuan Guo’s Endowed Chair in Nanobiotechnology position is from the William Fairish Endowment Fund. P.G. is a cofounder of Kylin Therapeutics, Inc., RNA Nano, LLC., and Biomotor and Nucleic Acid Nanotechnology Development Corp., Ltd.

References

  1. 1.
    Sugimoto N, Nakano S, Katoh M et al (1995) Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes. Biochemistry 34:11211–11216CrossRefGoogle Scholar
  2. 2.
    Searle MS, Williams DH (1993) On the stability of nucleic acid structures in solution: enthalpy-entropy compensations, internal rotations and reversibility. Nucleic Acids Res 21:2051–2056CrossRefGoogle Scholar
  3. 3.
    Ikawa Y, Tsuda K, Matsumura S et al (2004) De novo synthesis and development of an RNA enzyme. Proc Natl Acad Sci U S A 101:13750–13755CrossRefGoogle Scholar
  4. 4.
    Matsumura S, Ohmori R, Saito H et al (2009) Coordinated control of a designed trans-acting ligase ribozyme by a loop-receptor interaction. FEBS Lett 583:2819–2826CrossRefGoogle Scholar
  5. 5.
    Leontis NB, Lescoute A, Westhof E (2006) The building blocks and motifs of RNA architecture. Curr Opin Struct Biol 16:279–287CrossRefGoogle Scholar
  6. 6.
    Schroeder KT, McPhee SA, Ouellet J et al (2010) A structural database for k-turn motifs in RNA. RNA 16:1463–1468CrossRefGoogle Scholar
  7. 7.
    Li X, Horiya S, Harada K (2006) An efficient thermally induced RNA conformational switch as a framework for the functionalization of RNA nanostructures. J Am Chem Soc 128:4035–4040CrossRefGoogle Scholar
  8. 8.
    Laurenti E, Barde I, Verp S et al (2010) Inducible gene and shRNA expression in resident hematopoietic stem cells in vivo. Stem Cells 28:1390–1398CrossRefGoogle Scholar
  9. 9.
    Hoeprich S, Zhou Q, Guo S et al (2003) Bacterial virus phi29 pRNA as a hammerhead ribozyme escort to destroy hepatitis B virus. Gene Ther 10:1258–1267CrossRefGoogle Scholar
  10. 10.
    Chang KY, Tinoco I Jr (1994) Characterization of a “kissing” hairpin complex derived from the human immunodeficiency virus genome. Proc Natl Acad Sci U S A 91(18):8705–8709CrossRefGoogle Scholar
  11. 11.
    Bindewald E, Hayes R, Yingling YG et al (2008) RNAJunction: a database of RNA junctions and kissing loops for three-dimensional structural analysis and nanodesign. Nucleic Acids Res 36:D392–D397CrossRefGoogle Scholar
  12. 12.
    Wagner C, Ehresmann C, Ehresmann B et al (2004) Mechanism of dimerization of bicoid mRNA: initiation and stabilization. J Biol Chem 279:4560–4569CrossRefGoogle Scholar
  13. 13.
    Chen C, Sheng S, Shao Z et al (2000) A dimer as a building block in assembling RNA: A hexamer that gears bacterial virus phi29 DNA-translocating machinery. J Biol Chem 275(23):17510–17516CrossRefGoogle Scholar
  14. 14.
    Guo P, Zhang C, Chen C et al (1998) Inter-RNA interaction of phage phi29 pRNA to form a hexameric complex for viral DNA transportation. Mol Cell 2:149–155CrossRefGoogle Scholar
  15. 15.
    Guo P (2010) The emerging field of RNA nanotechnology. Nat Nanotechnol 5:833–842CrossRefGoogle Scholar
  16. 16.
    Guo P, Haque F, Hallahan B et al (2012) Uniqueness, advantages, challenges, solutions, and perspectives in therapeutics applying RNA nanotechnology. Nucleic Acid Ther 22:226–245Google Scholar
  17. 17.
    Shu Y, Pi F, Sharma A et al (2014) Stable RNA nanoparticles as potential new generation drugs for cancer therapy. Adv Drug Deliv Rev 66C:74–89CrossRefGoogle Scholar
  18. 18.
    Freier SM, Kierzek R, Jaeger JA et al (1986) Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci U S A 83:9373–9377CrossRefGoogle Scholar
  19. 19.
    Ehresmann C, Baudin F, Mougel M et al (1987) Probing the structure of RNAs in solution. Nucleic Acids Res 15:9109–9128CrossRefGoogle Scholar
  20. 20.
    Privalov PL, Filiminov VV (1978) Thermodynamic analysis of transfer RNA unfolding. J Mol Biol 122:447–464CrossRefGoogle Scholar
  21. 21.
    Pleij CWA, Rietveld K, Bosch L (1985) A new principle of RNA folding based on pseudonotting. Nucleic Acids Res 13(5):1717–1731CrossRefGoogle Scholar
  22. 22.
    Zuker M (1989) On finding all suboptimal foldings of an RNA molecule. Science 244:48–52CrossRefGoogle Scholar
  23. 23.
    Studnicka GM, Rahn GM, Cummings IW et al (1978) Computer method for predicting the secondary structure of single-stranded RNA. Nucleic Acids Res 5:3365–3387CrossRefGoogle Scholar
  24. 24.
    Reid BR (1981) NMR studies on RNA structure and dynamics. Annu Rev Biochem 50:969–96CrossRefGoogle Scholar
  25. 25.
    Shu D, Shu Y, Haque F et al (2011) Thermodynamically stable RNA three-way junctions for constructing multifuntional nanoparticles for delivery of therapeutics. Nat Nanotechnol 6:658–667CrossRefGoogle Scholar
  26. 26.
    Haque F, Shu D, Shu Y et al (2012) Ultrastable synergistic tetravalent RNA nanoparticles for targeting to cancers. Nano Today 7:245–257CrossRefGoogle Scholar
  27. 27.
    Liu J, Guo S, Cinier M et al (2010) Fabrication of stable and RNase-resistant RNA nanoparticles active in gearing the nanomotors for viral DNA packaging. ACS Nano 5:237–246CrossRefGoogle Scholar
  28. 28.
    de Fougerolles A, Vornlocher HP, Maraganore J et al (2007) Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 6:443–453CrossRefGoogle Scholar
  29. 29.
    Kim DH, Rossi JJ (2007) Strategies for silencing human disease using RNA interference. Nat Rev Genet 8:173–184CrossRefGoogle Scholar
  30. 30.
    Rozema DB, Lewis DL, Wakefield DH et al (2007) Dynamic polyconjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc Natl Acad Sci U S A 104:12982–12987CrossRefGoogle Scholar
  31. 31.
    Seth S, Johns R, Templin MV (2012) Delivery and biodistribution of siRNA for cancer therapy: challenges and future prospects. Ther Deliv 3:245–261CrossRefGoogle Scholar
  32. 32.
    Bae YH, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 153:198–205CrossRefGoogle Scholar
  33. 33.
    Shu D, Moll WD, Deng Z et al (2004) Bottom-up assembly of RNA arrays and superstructures as potential parts in nanotechnology. Nano Lett 4:1717–1723CrossRefGoogle Scholar
  34. 34.
    Shu Y, Haque F, Shu D et al (2013) Fabrication of 14 different RNA nanoparticles for specific tumor targeting without accumulation in normal organs. RNA 19:766–777CrossRefGoogle Scholar
  35. 35.
    Li W, Szoka F (2007) Lipid-based Nanoparticles for Nucleic Acid Delivery. Pharm Res 24:438–449CrossRefGoogle Scholar
  36. 36.
    Abdelmawla S, Guo S, Zhang L et al (2011) Pharmacological characterization of chemically synthesized monomeric pRNA nanoparticles for systemic delivery. Mol Ther 19:1312–1322CrossRefGoogle Scholar
  37. 37.
    Guo P, Haque F (eds) (2013) RNA Nanotechnology and Therapeutics. CRC Press, Boca Raton, FLGoogle Scholar
  38. 38.
    Shukla GC, Haque F, Tor Y et al (2011) A Boost for the Emerging Field of RNA Nanotechnology. ACS Nano 5:3405–3418CrossRefGoogle Scholar
  39. 39.
    Leontis N, Sweeney B, Haque F et al (2013) Conference Scene: Advances in RNA nanotechnology promise to transform medicine. Nanomedicine 8:1051–1054CrossRefGoogle Scholar
  40. 40.
    Guo P (ed) (2011) Methods: RNA nanotechnology. Elsevier, AmsterdamGoogle Scholar
  41. 41.
    Guo P (2005) RNA Nanotechnology: Engineering, assembly and applications in detection, gene delivery and therapy. J Nano Nanotechnol 5(12):1964–1982Google Scholar
  42. 42.
    Guo P, Coban O, Snead NM et al (2010) Engineering RNA for targeted siRNA delivery and medical application. Advan Drug Delivery Rev 62:650–666Google Scholar
  43. 43.
    Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415CrossRefGoogle Scholar
  44. 44.
    Andronescu M, Fejes AP, Hutter F et al (2004) A new algorithm for RNA secondary structure design. J Mol Biol 336:607–624CrossRefGoogle Scholar
  45. 45.
    Ding Y, Chan CY, Lawrence CE (2004) Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res 32:W135–W141CrossRefGoogle Scholar
  46. 46.
    Zadeh JN, Steenberg CD, Bois JS et al (2011) NUPACK: Analysis and design of nucleic acid systems. J Comput Chem 32:170–173CrossRefGoogle Scholar
  47. 47.
    Delebecque CJ, Silver PA, Lindner AB (2012) Designing and using RNA scaffolds to assemble proteins in vivo. Nat Protoc 7:1797–1807CrossRefGoogle Scholar
  48. 48.
    Watts JK, Deleavey GF, Damha MJ (2008) Chemically modified siRNA: tools and applications. Drug Discov Today 13:842–855CrossRefGoogle Scholar
  49. 49.
    Shaw BR, Moussa L, Sharaf M et al (2008) Boranophosphate siRNA-aptamer chimeras for tumor-specific downregulation of cancer receptors and modulators. Nucleic Acids Symp Ser (Oxf) 52:655–656CrossRefGoogle Scholar
  50. 50.
    Helmling S, Moyroud E, Schroeder W et al (2003) A new class of Spiegelmers containing 2′-fluoro-nucleotides. Nucleosides Nucleotides Nucleic Acids 22:1035–1038CrossRefGoogle Scholar
  51. 51.
    Luy B, Marino JP (2001) Measurement and application of 1H-19F dipolar couplings in the structure determination of 2′-fluorolabeled RNA. J Biomol NMR 20:39–47CrossRefGoogle Scholar
  52. 52.
    Reif B, Wittmann V, Schwalbe H et al (1997) Structural comparison of oligoribonucleotides and their 2′-deoxy-2′-fluoro analogs by heteronuclear NMR spectroscopy. Helv Chim Acta 80:1952–1971CrossRefGoogle Scholar
  53. 53.
    Binzel DW, Khisamutdinov EF, Guo P (2014) Entropy-driven one-step formation of Phi29 pRNA 3WJ from three RNA fragments. Biochemistry 53:2221–2231CrossRefGoogle Scholar
  54. 54.
    Guo P, Erickson S, Anderson D (1987) A small viral RNA is required for in vitro packaging of bacteriophage phi29 DNA. Science 236:690–694CrossRefGoogle Scholar
  55. 55.
    Zhang H, Endrizzi JA, Shu Y et al (2013) Crystal structure of 3WJ core revealing divalent ion-promoted thermostability and assembly of the Phi29 hexameric motor pRNA. RNA 19:1226–1237CrossRefGoogle Scholar
  56. 56.
    Khisamutdinov EF, Jasinski DL, Guo P (2014) RNA as a boiling-resistant anionic polymer material to build robust structures with defined shape and stoichiometry. ACS Nano 8:4771–4781CrossRefGoogle Scholar
  57. 57.
    Khisamutdinov E, Li H, Jasinski D et al (2014) Enhancing immunomodulation on innate immunity by shape transition among RNA triangle, square, and pentagon nanovehicles. Nucelic Acids Research 42:9996–10004CrossRefGoogle Scholar
  58. 58.
    Jasinski D, Khisamutdinov EF, Lyubchenko YL et al (2014) Physicochemically tunable poly-functionalized RNA square architecture with fluorogenic and ribozymatic properties. ACS Nano 8:7620–7629CrossRefGoogle Scholar
  59. 59.
    Martinez HM, Maizel JV, Shapiro BA (2008) RNA2D3D: A program for generating, viewing, and comparing 3-dimensional models of RNA. J Biomol Str Dyn 25:669–683CrossRefGoogle Scholar
  60. 60.
    Bindewald E, Grunewald C, Boyle B et al (2008) Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler. J Mol Graph Model 27:299–308CrossRefGoogle Scholar
  61. 61.
    Grabow WW, Zakrevsky P, Afonin KA et al (2011) Self-assembling RNA nanorings based on RNAI/II inverse kissing complexes. Nano Lett 11:878–887CrossRefGoogle Scholar
  62. 62.
    Afonin KA, Bindewald E, Yaghoubian AJ et al (2010) In vitro assembly of cubic RNA-based scaffolds designed in silico. Nat Nanotechnol 5:676–682CrossRefGoogle Scholar
  63. 63.
    Markham NR, Zuker M (2008) UNAFold: software for nucleic acid folding and hybridization. Methods Mol Biol 453:3–31CrossRefGoogle Scholar
  64. 64.
    Ohno H, Kobayashi T, Kabata R et al (2011) Synthetic RNA-protein complex shaped like an equilateral triangle. Nat Nanotechnol 6:116–120CrossRefGoogle Scholar
  65. 65.
    Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822CrossRefGoogle Scholar
  66. 66.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA ploymerase. Science 249:505–510CrossRefGoogle Scholar
  67. 67.
    Mi J, Liu Y, Rabbani ZN et al (2010) In vivo selection of tumor-targeting RNA motifs. Nat Chem Biol 6:22–24CrossRefGoogle Scholar
  68. 68.
    Lupold SE, Hicke BJ, Lin Y et al (2002) Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res 62:4029–4033Google Scholar
  69. 69.
    Sharma AK, Kent AD, Heemstra JM (2012) Enzyme-linked small-molecule detection using split aptamer ligation. Anal Chem 84:6104–6109CrossRefGoogle Scholar
  70. 70.
    Sharma AK, Heemstra JM (2011) Small-molecule-dependent split aptamer ligation. J Am Chem Soc 133:12426–12429CrossRefGoogle Scholar
  71. 71.
    Low PS, Henne WA, Doorneweerd DD (2008) Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res 41:120–129CrossRefGoogle Scholar
  72. 72.
    Toffoli G, Cernigoi C, Russo A et al (1997) Overexpression of folate binding protein in ovarian cancers. Int J Cancer 74:193–198CrossRefGoogle Scholar
  73. 73.
    Gosselin MA, Guo W, Lee RJ (2002) Incorporation of reversibly cross-linked polyplexes into LPDII vectors for gene delivery. Bioconjug Chem 13:1044–1053CrossRefGoogle Scholar
  74. 74.
    Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811CrossRefGoogle Scholar
  75. 75.
    Li H, Li WX, Ding SW (2002) Induction and suppression of RNA silencing by an animal virus. Science 296:1319–1321CrossRefGoogle Scholar
  76. 76.
    Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553CrossRefGoogle Scholar
  77. 77.
    Jacque JM, Triques K, Stevenson M (2002) Modulation of HIV-1 replication by RNA interference. Nature 418:435–438CrossRefGoogle Scholar
  78. 78.
    Varambally S, Dhanasekaran SM, Zhou M et al (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419:624–629CrossRefGoogle Scholar
  79. 79.
    Carmichael GG (2002) Medicine: silencing viruses with RNA. Nature 418:379–380CrossRefGoogle Scholar
  80. 80.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233CrossRefGoogle Scholar
  81. 81.
    Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866CrossRefGoogle Scholar
  82. 82.
    Ye X, Liu Z, Hemida MG et al (2011) Targeted delivery of mutant tolerant anti-coxsackievirus artificial microRNAs using folate conjugated bacteriophage Phi29 pRNA. PLoS One 6:e21215CrossRefGoogle Scholar
  83. 83.
    Hanagata N (2012) Structure-dependent immunostimulatory effect of CpG oligodeoxynucleotides and their delivery system. Int J Nanomedicine 7:2181–2195CrossRefGoogle Scholar
  84. 84.
    Klinman DM (2004) Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat Rev Immunol 4:248–257CrossRefGoogle Scholar
  85. 85.
    Paredes E, Evans M, Das SR (2011) RNA labeling, conjugation and ligation. Methods 54(2):251–259CrossRefGoogle Scholar
  86. 86.
    Grate D, Wilson C (1999) Laser-mediated, site-specific inactivation of RNA transcripts. Proc Natl Acad Sci U S A 96:6131–6136CrossRefGoogle Scholar
  87. 87.
    Paige JS, Wu KY, Jaffrey SR (2011) RNA mimics of green fluorescent protein. Science 333:642–646CrossRefGoogle Scholar
  88. 88.
    Shu D, Zhang L, Khisamutdinov E et al (2013) Programmable folding of fusion RNA complex driven by the 3WJ motif of phi29 motor pRNA. Nucleic Acids Res 42:e10CrossRefGoogle Scholar
  89. 89.
    Shlyakhtenko LS, Gall AA, Filonov A et al (2003) Silatrane-based surface chemistry for immobilization of DNA, protein-DNA complexes and other biological materials. Ultramicroscopy 97:279–287CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Nanobiotechnology Center, Markey Cancer Center, Departmentof Pharmaceutical SciencesUniversity of KentuckyLexingtonUSA

Personalised recommendations