Advertisement

Visualizing the Spatiotemporal Dynamics of DNA Damage in Budding Yeast

  • Chihiro Horigome
  • Vincent Dion
  • Andrew Seeber
  • Lutz R. Gehlen
  • Susan M. GasserEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1292)

Abstract

Fluorescence microscopy has enabled the analysis of both the spatial distribution of DNA damage and its dynamics during the DNA damage response (DDR). Three microscopic techniques can be used to study the spatiotemporal dynamics of DNA damage. In the first part we describe how we determine the position of DNA double-strand breaks (DSBs) relative to the nuclear envelope. The second part describes how to quantify the co-localization of DNA DSBs with nuclear pore clusters, or other nuclear subcompartments. The final protocols describe methods for the quantification of locus mobility over time.

Key words

DNA damage Double-strand breaks Chromatin mobility Nuclear pore clustering Mean-square displacement analysis Fluorescence microscopy 

Notes

Acknowledgement

We thank J. E. Haber for yeast strains and the Friedrich Miescher Institute Microscopy Facility for technical help. C.H. thanks the Marie Curie International program and JSPS Research Abroad program for fellowships. The Gasser laboratory thanks the Novartis Research Foundation, the Swiss National Science Foundation “Sinergia grant,” NCCR “Frontiers in Genetics,” and the Human Frontier Science Program (RGP0017).

References

  1. 1.
    Nagai S, Dubrana K, Tsai-Pflugfelder M et al (2008) Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase. Science 322:597–602CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Oza P, Jaspersen SL, Miele A et al (2009) Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery. Genes Dev 23:912–927CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Oza P, Peterson CL (2010) Opening the DNA repair toolbox: localization of DNA double strand breaks to the nuclear periphery. Cell Cycle 9:43–49CrossRefPubMedGoogle Scholar
  4. 4.
    Kalocsay M, Hiller NJ, Jentsch S (2009) Chromosome-wide Rad51 spreading and SUMO-H2A.Z-dependent chromosome fixation in response to a persistent DNA double-strand break. Mol Cell 33:335–343CrossRefPubMedGoogle Scholar
  5. 5.
    Horigome C, Oma Y, Konishi T et al (2014) SWR1 and INO80 chromatin remodelers contribute to DNA double-strand break perinuclear anchorage site choice. Mol Cell 55:626–639CrossRefPubMedGoogle Scholar
  6. 6.
    Meister P, Gehlen LR, Varela E et al (2010) Visualizing yeast chromosomes and nuclear architecture. Methods Enzymol 470:535–567CrossRefPubMedGoogle Scholar
  7. 7.
    Belmont AS (2001) Visualizing chromosome dynamics with GFP. Trends Cell Biol 11:250–257CrossRefPubMedGoogle Scholar
  8. 8.
    Straight AF, Belmont AS, Robinett CC, Murray AW (1996) GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion. Curr Biol 6:1599–1608CrossRefPubMedGoogle Scholar
  9. 9.
    Bystricky K, Van Attikum H, Montiel MD et al (2009) Regulation of nuclear positioning and dynamics of the silent mating type loci by the yeast Ku70/Ku80 complex. Mol Cell Biol 29:835–848CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Dion V, Kalck V, Seeber A et al (2013) Cohesin and the nucleolus constrain the mobility of spontaneous repair foci. EMBO Rep 14:984–991CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Sugawara N, Haber JE (2012) Monitoring DNA recombination initiated by HO endonuclease. Methods Mol Biol 920:349–370CrossRefPubMedGoogle Scholar
  12. 12.
    Horigome C, Okada T, Shimazu K et al (2011) Ribosome biogenesis factors bind a nuclear envelope SUN domain protein to cluster yeast telomeres. EMBO J 30:3799–3811CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Doye V, Wepf R, Hurt EC (1994) A novel nuclear pore protein Nup133p with distinct roles in poly(A) + RNA transport and nuclear pore distribution. EMBO J 13:6062–6075PubMedCentralPubMedGoogle Scholar
  14. 14.
    Loeillet S, Palancade B, Cartron M et al (2005) Genetic network interactions among replication, repair and nuclear pore deficiencies in yeast. DNA Repair (Amst) 4:459–468CrossRefGoogle Scholar
  15. 15.
    Schober H, Ferreira H, Kalck V et al (2009) Yeast telomerase and the SUN domain protein Mps3 anchor telomeres and repress subtelomeric recombination. Genes Dev 23:928–938CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Heun P, Laroche T, Shimada K et al (2001) Chromosome dynamics in the yeast interphase nucleus. Science 294:2181–2186CrossRefPubMedGoogle Scholar
  17. 17.
    Neumann FR, Dion V, Gehlen LR et al (2012) Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination. Genes Dev 26:369–383CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Dion V, Gasser SM (2013) Chromatin movement in the maintenance of genome stability. Cell 152:1355–1364CrossRefPubMedGoogle Scholar
  19. 19.
    Hediger F, Dubrana K, Gasser SM (2002) Myosin-like proteins 1 and 2 are not required for silencing or telomere anchoring, but act in the Tel1 pathway of telomere length control. J Struct Biol 140:79–91CrossRefPubMedGoogle Scholar
  20. 20.
    Rosa A, Maddocks JH, Neumann FR et al (2006) Measuring limits of telomere movement on nuclear envelope. Biophys J 90:L24–L26CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Taddei A, Van Houwe G, Hediger F et al (2006) Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature 441:774–778CrossRefPubMedGoogle Scholar
  22. 22.
    Dion V, Kalck V, Horigome C et al (2012) Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery. Nat Cell Biol 14:502–509CrossRefPubMedGoogle Scholar
  23. 23.
    Seeber A, Dion V, Gasser SM (2013) Checkpoint kinases and the INO80 nucleosome remodeling complex enhance global chromatin mobility in response to DNA damage. Genes Dev 27:1999–2008CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Gartenberg MR, Neumann FR, Laroche T et al (2004) Sir-mediated repression can occur independently of chromosomal and subnuclear contexts. Cell 119:955–967CrossRefPubMedGoogle Scholar
  25. 25.
    Marshall WF, Straight A, Marko JF et al (1997) Interphase chromosomes undergo constrained diffusional motion in living cells. Curr Biol 7:930–939CrossRefPubMedGoogle Scholar
  26. 26.
    Mine-Hattab J, Rothstein R (2012) Increased chromosome mobility facilitates homology search during recombination. Nat Cell Biol 14:510–517CrossRefPubMedGoogle Scholar
  27. 27.
    Sage D, Neumann FR, Hediger F et al (2005) Automatic tracking of individual fluorescence particles: application to the study of chromosome dynamics. IEEE Trans Image Process 14:1372–1383CrossRefPubMedGoogle Scholar
  28. 28.
    Jensen RE, Herskowitz I (1984) Directionality and regulation of cassette substitution in yeast. Cold Spring Harb Symp Quant Biol 49:97–104CrossRefPubMedGoogle Scholar
  29. 29.
    Sandell LL, Zakian VA (1993) Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell 75:729–739CrossRefPubMedGoogle Scholar
  30. 30.
    Plessis A, Perrin A, Haber JE, Dujon B (1992) Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus. Genetics 130:451–460PubMedCentralPubMedGoogle Scholar
  31. 31.
    Jacquier A, Dujon B (1985) An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene. Cell 41:383–394CrossRefPubMedGoogle Scholar
  32. 32.
    Meister P, Towbin BD, Pike BL et al (2010) The spatial dynamics of tissue-specific promoters during C. elegans development. Genes Dev 24:766–782CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Taddei A, Hediger F, Neumann FR et al (2004) Separation of silencing from perinuclear anchoring functions in yeast Ku80, Sir4 and Esc1 proteins. EMBO J 23:1301–1312CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Chihiro Horigome
    • 1
  • Vincent Dion
    • 1
    • 2
  • Andrew Seeber
    • 1
    • 3
  • Lutz R. Gehlen
    • 1
  • Susan M. Gasser
    • 1
    • 3
    Email author
  1. 1.Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
  2. 2.Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
  3. 3.Faculty of Natural SciencesUniversity of BaselBaselSwitzerland

Personalised recommendations