Advertisement

Site Identification by Ligand Competitive Saturation (SILCS) Simulations for Fragment-Based Drug Design

  • Christina E. Faller
  • E. Prabhu Raman
  • Alexander D. MacKerellJr.
  • Olgun Guvench
Part of the Methods in Molecular Biology book series (MIMB, volume 1289)

Abstract

Fragment-based drug design (FBDD) involves screening low molecular weight molecules (“fragments”) that correspond to functional groups found in larger drug-like molecules to determine their binding to target proteins or nucleic acids. Based on the principle of thermodynamic additivity, two fragments that bind nonoverlapping nearby sites on the target can be combined to yield a new molecule whose binding free energy is the sum of those of the fragments. Experimental FBDD approaches, like NMR and X-ray crystallography, have proven very useful but can be expensive in terms of time, materials, and labor. Accordingly, a variety of computational FBDD approaches have been developed that provide different levels of detail and accuracy.

The Site Identification by Ligand Competitive Saturation (SILCS) method of computational FBDD uses all-atom explicit-solvent molecular dynamics (MD) simulations to identify fragment binding. The target is “soaked” in an aqueous solution with multiple fragments having different identities. The resulting computational competition assay reveals what small molecule types are most likely to bind which regions of the target. From SILCS simulations, 3D probability maps of fragment binding called “FragMaps” can be produced. Based on the probabilities relative to bulk, SILCS FragMaps can be used to determine “Grid Free Energies (GFEs),” which provide per-atom contributions to fragment binding affinities. For essentially no additional computational overhead relative to the production of the FragMaps, GFEs can be used to compute Ligand Grid Free Energies (LGFEs) for arbitrarily complex molecules, and these LGFEs can be used to rank-order the molecules in accordance with binding affinities.

Key words

Fragment-based drug design (FBDD) Molecular dynamics (MD) Site identification by ligand competitive saturation (SILCS) Binding free energy FragMap Grid free energy (GFE) Ligand grid free energy (LGFE) 

Notes

Acknowledgements

NIH AI080968, CA107331, and R15GM099022; NSF XSEDE TG-MCB120007; Samuel Waxman Cancer Research Foundation; The University of Maryland Computer-Aided Drug Design Center; and University of New England start-up funds.

Conflict of interest: O.G. and A.D.M. are founders of SilcsBio LLC and are currently Manager and Chief Scientific Officer of the same, respectively.

References

  1. 1.
    Erlanson DA, McDowell RS, O’Brien T (2004) Fragment-based drug discovery. J Med Chem 47:3463–34682CrossRefPubMedGoogle Scholar
  2. 2.
    Dill KA (1997) Additivity principles in biochemistry. J Biol Chem 272:701–704CrossRefPubMedGoogle Scholar
  3. 3.
    Hennig M, Ruf A, Huber W (2012) Combining biophysical screening and X-ray crystallography for fragment-based drug discovery. Top Curr Chem 317:115–143CrossRefPubMedGoogle Scholar
  4. 4.
    Erlanson DA (2012) Introduction to fragment-based drug discovery. Top Curr Chem 317:1–32CrossRefPubMedGoogle Scholar
  5. 5.
    Orita M, Warizaya M, Amano Y, Ohno K, Niimi T (2009) Advances in fragment-based drug discovery platforms. Expert Opin Drug Discov 4:1125–1144CrossRefPubMedGoogle Scholar
  6. 6.
    Sancineto L, Massari S, Iraci N, Tabarrini O (2013) From small to powerful: the fragments universe and its “chem-appeal”. Curr Med Chem 20:1355–1381CrossRefPubMedGoogle Scholar
  7. 7.
    Miranker A, Karplus M (1991) Functionality maps of binding-sites – a multiple copy simultaneous search method. Proteins Struct Funct Genet 11:29–34CrossRefPubMedGoogle Scholar
  8. 8.
    Majeux N, Scarsi M, Apostolakis J, Ehrhardt C, Caflisch A (1999) Exhaustive docking of molecular fragments with electrostatic solvation. Proteins Struct Funct Genet 37:88–105CrossRefPubMedGoogle Scholar
  9. 9.
    Landon MR, Lancia DR Jr, Yu J, Thiel SC, Vajda S (2007) Identification of hot spots within druggable binding regions by computational solvent mapping of proteins. J Med Chem 50:1231–1240CrossRefPubMedGoogle Scholar
  10. 10.
    Clark M, Guarnieri F, Shkurko I, Wiseman J (2006) Grand canonical Monte Carlo simulation of ligand-protein binding. J Chem Inf Model 46:231–242CrossRefPubMedGoogle Scholar
  11. 11.
    Carlson HA, Masukawa KM, Rubins K, Bushman FD, Jorgensen WL, Lins RD, Briggs JM, McCammon JA (2000) Developing a dynamic pharmacophore model for HIV-1 integrase. J Med Chem 43:2100–21014CrossRefPubMedGoogle Scholar
  12. 12.
    Alonso H, Bliznyuk AA, Gready JE (2006) Combining docking and molecular dynamic simulations in drug design. Med Res Rev 26:531–568CrossRefPubMedGoogle Scholar
  13. 13.
    Brooijmans N, Kuntz ID (2003) Molecular recognition and docking algorithms. Annu Rev Biophys Biomol Struct 32:335–373CrossRefPubMedGoogle Scholar
  14. 14.
    Sousa SF, Fernandes PA, Ramos MJ (2006) Protein-ligand docking: current status and future challenges. Proteins Struct Funct Bioinf 65:15–26CrossRefGoogle Scholar
  15. 15.
    Zhong S, Chen X, Zhu X, Dziegielewska B, Bachman KE, Ellenberger T, Ballin JD, Wilson GM, Tomkinson AE, MacKerell AD (2008) Identification and validation of human DNA ligase inhibitors using computer-aided drug design. J Med Chem 51:4553–4562CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Totrov M, Abagyan R (2008) Flexible ligand docking to multiple receptor conformations: a practical alternative. Curr Opin Struct Biol 18:178–184CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Congreve M, Chessari G, Tisi D, Woodhead AJ (2008) Recent developments in fragment-based drug discovery. J Med Chem 51:3661–3680CrossRefPubMedGoogle Scholar
  18. 18.
    Majeux N, Scarsi M, Caflisch A (2001) Efficient electrostatic solvation model for protein-fragment docking. Proteins Struct Funct Genet 42:256–268CrossRefPubMedGoogle Scholar
  19. 19.
    Gozalbes R, Carbajo RJ, Pineda-Lucena A (2010) Contributions of computational chemistry and biophysical techniques to fragment-based drug discovery. Curr Med Chem 17:1769–1794CrossRefPubMedGoogle Scholar
  20. 20.
    Rabal O, Urbano-Cuadrado M, Oyarzabal J (2011) Computational medicinal chemistry in fragment-based drug discovery: what, how and when. Future Med Chem 3:95–134CrossRefPubMedGoogle Scholar
  21. 21.
    Moitessier N, Englebienne P, Lee D, Lawandi J, Corbeil CR (2008) Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. Br J Pharmacol 153(Suppl 1):S7–S26PubMedCentralPubMedGoogle Scholar
  22. 22.
    Guvench O, MacKerell AD Jr (2009) Computational evaluation of protein-small molecule binding. Curr Opin Struct Biol 19:56–61CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Huang SY, Grinter SZ, Zou X (2010) Scoring functions and their evaluation methods for protein-ligand docking: recent advances and future directions. Phys Chem Chem Phys 12:12899–12908CrossRefPubMedGoogle Scholar
  24. 24.
    Huang SY, Zou X (2010) Advances and challenges in protein-ligand docking. Int J Mol Sci 11:3016–3034CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Oostenbrink C, Villa A, Mark AE, Van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25:1656–1676CrossRefPubMedGoogle Scholar
  26. 26.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197CrossRefGoogle Scholar
  27. 27.
    Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins Struct Funct Bioinf 65:712–725CrossRefGoogle Scholar
  28. 28.
    Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174CrossRefPubMedGoogle Scholar
  29. 29.
    Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236CrossRefGoogle Scholar
  30. 30.
    Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105:6474–6487CrossRefGoogle Scholar
  31. 31.
    Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD Jr (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31:671–690PubMedCentralPubMedGoogle Scholar
  32. 32.
    Best RB, Zhu X, Shim J, Lopes PE, Mittal J, Feig M, Mackerell AD Jr (2012) Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles. J Chem Theory Comput 8:3257–3273CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Guvench O, MacKerell AD Jr (2008) Comparison of protein force fields for molecular dynamics simulations. Methods Mol Biol 443:63–88CrossRefPubMedGoogle Scholar
  34. 34.
    Boresch S, Tettinger F, Leitgeb M, Karplus M (2003) Absolute binding free energies: a quantitative approach for their calculation. J Phys Chem B 107:9535–9551CrossRefGoogle Scholar
  35. 35.
    Jayachandran G, Shirts MR, Park S, Pande VS (2006) Parallelized-over-parts computation of absolute binding free energy with docking and molecular dynamics. J Chem Phys 125:084901CrossRefPubMedGoogle Scholar
  36. 36.
    Jiao D, Golubkov PA, Darden TA, Ren P (2008) Calculation of protein-ligand binding free energy by using a polarizable potential. Proc Natl Acad Sci U S A 105:6290–6295CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Lee MS, Olson MA (2006) Calculation of absolute protein-ligand binding affinity using path and endpoint approaches. Biophys J 90:864–877CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Lee MS, Olson MA (2008) Calculation of absolute ligand binding free energy to a ribosome-targeting protein as a function of solvent model. J Phys Chem B 112:13411–13417CrossRefPubMedGoogle Scholar
  39. 39.
    Mobley DL, Graves AP, Chodera JD, McReynolds AC, Shoichet BK, Dill KA (2007) Predicting absolute ligand binding free energies to a simple model site. J Mol Biol 371:1118–1134CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Shirts MR, Mobley DL, Chodera JD, Pande VS (2007) Accurate and efficient corrections for missing dispersion interactions in molecular simulations. J Phys Chem B 111:13052–13063CrossRefPubMedGoogle Scholar
  41. 41.
    Wang J, Deng Y, Roux B (2006) Absolute binding free energy calculations using molecular dynamics simulations with restraining potentials. Biophys J 91:2798–2814CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Woo HJ, Roux B (2005) Calculation of absolute protein-ligand binding free energy from computer simulations. Proc Natl Acad Sci U S A 102:6825–6830CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Gilson MK, Zhou HX (2007) Calculation of protein-ligand binding affinities. Annu Rev Biophys Biomol Struct 36:21–42CrossRefPubMedGoogle Scholar
  44. 44.
    Guvench O, MacKerell AD Jr (2009) Computational fragment-based binding site identification by ligand competitive saturation. PLoS Comput Biol 5:e1000435CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Raman EP, Yu W, Lakkaraju SK, MacKerell AD Jr (2013) Inclusion of multiple fragment types in the site identification by ligand competitive saturation (SILCS) approach. J Chem Inf Model 53:3384–3398Google Scholar
  46. 46.
    Kuntz ID, Chen K, Sharp KA, Kollman PA (1999) The maximal affinity of ligands. Proc Natl Acad Sci U S A 96:9997–10002CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Hopkins AL, Groom CR, Alex A (2004) Ligand efficiency: a useful metric for lead selection. Drug Discov Today 9:430–431CrossRefPubMedGoogle Scholar
  48. 48.
    Spyrakis F, BidonChanal A, Barril X, Luque FJ (2011) Protein flexibility and ligand recognition: challenges for molecular modeling. Curr Top Med Chem 11:192–210CrossRefPubMedGoogle Scholar
  49. 49.
    Seco J, Luque FJ, Barril X (2009) Binding site detection and druggability index from first principles. J Med Chem 52:2363–2371CrossRefPubMedGoogle Scholar
  50. 50.
    Yang C-Y, Wang S (2011) Hydrophobic binding hot spots of Bcl-xL protein‚ protein interfaces by cosolvent molecular dynamics simulation. ACS Med Chem Lett 2:280–284CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Lexa KW, Carlson HA (2011) Full protein flexibility is essential for proper hot-spot mapping. J Am Chem Soc 133:200–202CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Tan YS, Sledz P, Lang S, Stubbs CJ, Spring DR, Abell C, Best RB (2012) Using ligand-mapping simulations to design a ligand selectively targeting a cryptic surface pocket of polo-like kinase 1. Angew Chem Int Ed Engl 51:10078–10081CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Bakan A, Nevins N, Lakdawala AS, Bahar I (2012) Druggability assessment of allosteric proteins by dynamics simulations in the presence of probe molecules. J Chem Theory Comput 8:2435–4247CrossRefPubMedCentralPubMedGoogle Scholar
  54. 54.
    Foster TJ, Mackerell AD Jr, Guvench O (2012) Balancing target flexibility and target denaturation in computational fragment-based inhibitor discovery. J Comput Chem 33:1880–1891CrossRefPubMedCentralPubMedGoogle Scholar
  55. 55.
    Boczko EM, Brooks CL III (1995) First-principles calculation of the folding free energy of a three-helix bundle protein. Science 269:393–396CrossRefPubMedGoogle Scholar
  56. 56.
    Sheinerman FB, Brooks CL III (1998) Calculations on folding of segment B1 of streptococcal protein G. J Mol Biol 278:439–456CrossRefPubMedGoogle Scholar
  57. 57.
    Shea JE, Brooks CL III (2001) From folding theories to folding proteins: a review and assessment of simulation studies of protein folding and unfolding. Annu Rev Phys Chem 52:499–535CrossRefPubMedGoogle Scholar
  58. 58.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38CrossRefPubMedGoogle Scholar
  59. 59.
    Sanner MF (1999) Python: a programming language for software integration and development. J Mol Graph Model 17:57–61PubMedGoogle Scholar
  60. 60.
    Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67:235–242CrossRefPubMedCentralPubMedGoogle Scholar
  62. 62.
    Bernard D, Coop A, MacKerell AD Jr (2007) Quantitative conformationally sampled pharmacophore for delta opioid ligands: reevaluation of hydrophobic moieties essential for biological activity. J Med Chem 50:1799–1809CrossRefPubMedCentralPubMedGoogle Scholar
  63. 63.
    Raman EP, Yu W, Guvench O, MacKerell AD Jr (2011) Reproducing crystal binding modes of ligand functional groups using site-identification by ligand competitive saturation (SILCS) simulations. J Chem Inf Model 51:877–896CrossRefPubMedCentralPubMedGoogle Scholar
  64. 64.
    Baum B, Muley L, Heine A, Smolinski M, Hangauer D, Klebe G (2009) Think twice: understanding the high potency of bis(phenyl)methane inhibitors of thrombin. J Mol Biol 391:552–564CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Christina E. Faller
    • 1
  • E. Prabhu Raman
    • 2
  • Alexander D. MacKerellJr.
    • 2
  • Olgun Guvench
    • 1
  1. 1.Department of Pharmaceutical Sciences, College of PharmacyUniversity of New EnglandPortlandUSA
  2. 2.Department of Pharmaceutical Sciences, School of PharmacyUniversity of MarylandBaltimoreUSA

Personalised recommendations