Skip to main content

Translating Ribosome Affinity Purification (TRAP) Followed by RNA Sequencing Technology (TRAP-SEQ) for Quantitative Assessment of Plant Translatomes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1284))

Abstract

Translating Ribosome Affinity Purification (TRAP) is a technology to isolate the population of mRNAs associated with at least one 80S ribosome, referred as the translatome. TRAP is based on the expression of an epitope-tagged version of a ribosomal protein and the affinity purification of ribosomes and associated mRNAs using antibodies conjugated to agarose beads. Quantitative assessment of the translatome is achieved by direct RNA sequencing (RNA-SEQ), which provides accurate quantitation of ribosome-associated mRNAs and reveals alternatively spliced isoforms. Here we present a detailed procedure for TRAP, as well as a guide for preparation of RNA-SEQ libraries (TRAP-SEQ) and a primary data analysis. This methodology enables the study of translational dynamic by assessing rapid changes in translatomes, at organ or cell-type level, during development or in response to endogenous or exogenous stimuli.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bailey-Serres J (2013) Microgenomics: genome-scale, cell-specific monitoring of multiple gene regulation tiers. Annu Rev Plant Biol 64:293–325

    Article  CAS  PubMed  Google Scholar 

  2. Parker R, Sheth U (2007) P bodies and the control of mRNA translation and degradation. Mol Cell 25:635–646

    Article  CAS  PubMed  Google Scholar 

  3. Balagopal V, Parker R (2009) Polysomes, P bodies and stress granules: states and fates of eukaryotic mRNAs. Curr Opin Cell Biol 21:403–408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Bailey-Serres J, Sorenson R, Juntawong P (2009) Getting the message across: cytoplasmic ribonucleoprotein complexes. Trends Plant Sci 14:443–453

    Article  CAS  PubMed  Google Scholar 

  5. Mustroph A, Zanetti ME, Jang CJ et al (2009) Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis. Proc Natl Acad Sci U S A 106:18843–18848

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Halbeisen RE, Gerber AP (2009) Stress-dependent coordination of transcriptome and translatome in yeast. PLoS Biol 7:e105

    Article  Google Scholar 

  7. Masek T, Valasek L, Pospisek M (2011) Polysome analysis and RNA purification from sucrose gradients. Methods Mol Biol 703:293–309

    Article  CAS  PubMed  Google Scholar 

  8. Halbeisen RE, Scherrer T, Gerber AP (2009) Affinity purification of ribosomes to access the translatome. Methods 48:306–310

    Article  CAS  PubMed  Google Scholar 

  9. Zanetti ME, Chang IF, Gong F et al (2005) Immunopurification of polyribosomal complexes of Arabidopsis for global analysis of gene expression. Plant Physiol 138:624–635

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Reynoso MA, Blanco FA, Bailey-Serres J et al (2012) Selective recruitment of mRNAs and miRNAs to polyribosomes in response to rhizobia infection in Medicago truncatula. Plant J 73:289–301

    Article  Google Scholar 

  11. Mustroph A, Juntawong P, Bailey-Serres J (2009) Isolation of plant polysomal mRNA by differential centrifugation and ribosome immunopurification methods. Methods Mol Biol 553:109–126

    Article  CAS  PubMed  Google Scholar 

  12. Branco-Price C, Kaiser KA, Jang CJ et al (2008) Selective mRNA translation coordinates energetic and metabolic adjustments to cellular oxygen deprivation and reoxygenation in Arabidopsis thaliana. Plant J 56:743–755

    Article  CAS  PubMed  Google Scholar 

  13. Jiao Y, Meyerowitz EM (2010) Cell-type specific analysis of translating RNAs in developing flowers reveals new levels of control. Mol Syst Biol 6:419

    Article  PubMed Central  PubMed  Google Scholar 

  14. Juntawong P, Girke T, Bazin J et al (2014) Translational dynamics revealed by genome-wide profiling of ribosome footprints in Arabidopsis. Proc Natl Acad Sci U S A 111:E203–E212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Aubry S, Smith-Unna RD, Boursnell CM et al (2014) Transcript residency on ribosomes reveals a key role for the Arabidopsis thaliana bundle sheath in sulfur and glucosinolate metabolism. Plant J 78:659–673

    Article  CAS  PubMed  Google Scholar 

  16. Lin SY, Chen PW, Chuang MH et al (2014) Profiling of translatomes of in vivo-grown pollen tubes reveals genes with roles in micropylar guidance during pollination in Arabidopsis. Plant Cell 26:602–618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Juntawong P, Sorenson R, Bailey-Serres J (2013) Cold shock protein 1 chaperones mRNAs during translation in Arabidopsis thaliana. Plant J 74:1016–1028

    Article  CAS  PubMed  Google Scholar 

  18. Moeller JR, Moscou MJ, Bancroft T et al (2012) Differential accumulation of host mRNAs on polyribosomes during obligate pathogen-plant interactions. Mol Biosyst 8:2153–2165

    Article  CAS  PubMed  Google Scholar 

  19. Piques M, Schulze WX, Hohne M et al (2009) Ribosome and transcript copy numbers, polysome occupancy and enzyme dynamics in Arabidopsis. Mol Syst Biol 5:314

    Article  PubMed Central  PubMed  Google Scholar 

  20. Juntawong P, Bailey-Serres J (2012) Dynamic light regulation of translation status in Arabidopsis thaliana. Front Plant Sci 3:66. doi:10.3389/fpls.2012.00066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Liu MJ, Wu SH, Chen HM (2012) Widespread translational control contributes to the regulation of Arabidopsis photomorphogenesis. Mol Syst Biol 8:566

    Article  PubMed Central  PubMed  Google Scholar 

  22. Ron M, Kajala K, Pauluzzi G et al (2014) Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol 166:455–469. doi:10.1104/pp.114.239392

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Williams AJ, Werner-Fraczek J, Chang IF et al (2003) Regulated phosphorylation of 40S ribosomal protein S6 in root tips of maize. Plant Physiol 132:2086–2097

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Kawaguchi R, Girke T, Bray EA et al (2004) Differential mRNA translation contributes to gene regulation under non-stress and dehydration stress conditions in Arabidopsis thaliana. Plant J 38:823–839

    Article  CAS  PubMed  Google Scholar 

  25. Mustroph A, Zanetti ME, Girke T et al (2013) Isolation and analysis of mRNAs from specific cell types of plants by ribosome immunopurification. Methods Mol Biol 959:277–302

    Article  CAS  PubMed  Google Scholar 

  26. Garber M, Grabherr MG, Guttman M et al (2011) Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Methods 8:469–477

    Article  CAS  PubMed  Google Scholar 

  27. Robinson JT, Thorvaldsdottir H, Winckler W et al (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Thorvaldsdottir H, Robinson JT, Mesirov JP (2013) Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Trapnell C, Williams BA, Pertea G et al (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Trapnell C, Roberts A, Goff L et al (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Schroeder A, Mueller O, Stocker S et al (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7:3

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ankelika Mustroph, Cristina Branco-Price, and others that have contributed to developing the TRAP-SEQ technology. Sequencing of the M. truncatula TRAP libraries was done at John Craig Venter Institute. We also thank Christopher Town and Benjamin Rose for discussion and advice on RNA-SEQ analysis. This work has been financially supported by PICT 2007-00095 and PICT 2010-2431, ANPCyT, Argentina, funded to M.E.Z. and by an International cooperation program of CONICET, Argentina, and the NSF, USA, funded to M.E.Z. and J.B.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Eugenia Zanetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Reynoso, M.A., Juntawong, P., Lancia, M., Blanco, F.A., Bailey-Serres, J., Zanetti, M.E. (2015). Translating Ribosome Affinity Purification (TRAP) Followed by RNA Sequencing Technology (TRAP-SEQ) for Quantitative Assessment of Plant Translatomes. In: Alonso, J., Stepanova, A. (eds) Plant Functional Genomics. Methods in Molecular Biology, vol 1284. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2444-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2444-8_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2443-1

  • Online ISBN: 978-1-4939-2444-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics