Skip to main content

High-Throughput Nuclease-Mediated Probing of RNA Secondary Structure in Plant Transcriptomes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1284))

Abstract

Empirical measurement of RNA secondary structure is an invaluable tool that has provided a more complete understanding of the RNA life cycle and functionality of this extremely important molecule. In general, methods for probing structural information involve treating RNA with either a chemical or an enzyme that preferentially targets regions of the RNA in a single- or double-stranded conformation (ssRNA and dsRNA, respectively). Here, we describe an approach that utilizes a combination of ssRNA- and dsRNA-specific nuclease (ss- and dsRNase, respectively) treatments along with high-throughput sequencing technology to provide comprehensive and robust measurements of RNA secondary structure across entire plant transcriptomes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

RBP:

RNA binding protein

rRNA:

Ribosomal RNA

tRNA:

Transfer RNA

snoRNA:

Small nucleolar RNA

lncRNA:

Long non-coding RNA

ssRNA:

Single-stranded RNA

dsRNA:

Double-stranded RNA

ssRNase:

Single-stranded RNA nuclease

dsRNase:

Double-stranded RNA nuclease

PCR:

Polymerase chain reaction

bp:

Base pair

smRNA:

Small RNA

smRNA-seq:

Small RNA sequencing

References

  1. Wan Y, Kertesz M, Spitale RC, Segal E, Chang HY (2011) Understanding the transcriptome through RNA structure. Nat Rev Genet 12:641–655

    Article  CAS  PubMed  Google Scholar 

  2. Wanrooij PH, Uhler JP, Simonsson T, Falkenberg M, Gustafsson CM (2010) G-quadruplex structures in RNA stimulate mitochondrial transcription termination and primer formation. Proc Natl Acad Sci U S A 107:16072–16077

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Dong H et al (2007) Distinct RNA elements confer specificity to flavivirus RNA cap methylation events. J Virol 81:4412–4421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Raker VA, Mironov AA, Gelfand MS, Pervouchine DD (2009) Modulation of alternative splicing by long-range RNA structures in Drosophila. Nucleic Acids Res 37:4533–4544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Warf MB, Berglund JA (2010) The role of RNA structure in regulating pre-mRNA splicing. Trends Biochem Sci 35:169–178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Oikawa D, Tokuda M, Hosoda A, Iwawaki T (2010) Identification of a consensus element recognized and cleaved by IRE1α. Nucleic Acids Res 38:6265–6273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Klasens BIF, Das AT, Berkhout B (1998) Inhibition of polyadenylation by stable RNA secondary structure. Nucleic Acids Res 26:1870–1876

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Grüter P et al (1998) TAP, the Human Homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus. Mol Cell 1:649–659

    Article  PubMed  Google Scholar 

  9. Bullock SL, Ringel I, Ish-Horowicz D, Lukavsky PJ (2010) A′-form RNA helices are required for cytoplasmic mRNA transport in Drosophila. Nat Struct Mol Biol 17:703–709

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Subramanian M et al (2011) G–quadruplex RNA structure as a signal for neurite mRNA targeting. EMBO Rep 12:697–704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kozak M (1988) Leader length and secondary structure modulate mRNA function under conditions of stress. Mol Cell Biol 8:2737–2744

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Wen J-D et al (2008) Following translation by single ribosomes one codon at a time. Nature 452:598–603

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Svitkin YV et al (2001) The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA 5′ secondary structure. RNA 7:382–394

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Goodarzi H et al (2012) Systematic discovery of structural elements governing stability of mammalian messenger RNAs. Nature 485:264–268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Tsai M-C et al (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329:689–693

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Kertesz M et al (2010) Genome-wide measurement of RNA secondary structure in yeast. Nature 467:103–107

    Article  CAS  PubMed  Google Scholar 

  17. Li F et al (2012) Regulatory impact of RNA secondary structure across the arabidopsis transcriptome. Plant Cell 24:4346–4359

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Buratti E, Baralle FE (2004) Influence of RNA secondary structure on the pre-mRNA splicing process. Mol Cell Biol 24:10505–10514

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Trappl K, Polacek N (2011) The ribosome: a molecular machine powered by RNA. Met Ions Life Sci 9:253–275

    Article  CAS  PubMed  Google Scholar 

  20. Schroeder R, Barta A, Semrad K (2004) Strategies for RNA folding and assembly. Nat Rev Mol Cell Biol 5:908–919

    Article  CAS  PubMed  Google Scholar 

  21. Khalil AM, Rinn JL (2011) RNA–protein interactions in human health and disease. Semin Cell Dev Biol 22:359–365

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Rouskin S, Zubradt M, Washietl S, Kellis M, Weissman JS (2014) Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505:701–705

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Ding Y et al (2014) In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 505:696–700

    Article  CAS  PubMed  Google Scholar 

  24. Wilkinson KA, Merino EJ, Weeks KM (2006) Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution. Nat Protoc 1:1610–1616

    Article  CAS  PubMed  Google Scholar 

  25. Ehresmann C et al (1987) Probing the structure of RNAs in solution. Nucleic Acids Res 15:9109–9128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Siegfried NA, Busan S, Rice GM, Nelson JAE, Weeks KM (2014) RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat Methods 11:959–965

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Qu X et al (2011) The ribosome uses two active mechanisms to unwind messenger RNA during translation. Nature 475:118–121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Talkish J, May G, Lin Y, Woolford JL, McManus CJ (2014) Mod-seq: high-throughput sequencing for chemical probing of RNA structure. RNA 20:713–720

    Article  CAS  PubMed  Google Scholar 

  29. Li F et al (2012) Global analysis of RNA secondary structure in two metazoans. Cell Rep 1:69–82

    Article  CAS  PubMed  Google Scholar 

  30. Mahalakshmi YV, Jagannadham MV, Pandit MW (2000) Ribonuclease from cobra snake venom: purification by affinity chromatography and further characterization. IUBMB Life 49:309–316

    Article  CAS  PubMed  Google Scholar 

  31. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12

    Article  Google Scholar 

  32. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Kim D et al (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36

    Article  PubMed Central  PubMed  Google Scholar 

  34. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Gruber AR, Lorenz R, Bernhart SH, Neubock R, Hofacker IL (2008) The Vienna RNA Websuite. Nucleic Acids Res 36:W70–W74

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian D. Gregory .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Vandivier, L.E., Li, F., Gregory, B.D. (2015). High-Throughput Nuclease-Mediated Probing of RNA Secondary Structure in Plant Transcriptomes. In: Alonso, J., Stepanova, A. (eds) Plant Functional Genomics. Methods in Molecular Biology, vol 1284. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2444-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2444-8_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2443-1

  • Online ISBN: 978-1-4939-2444-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics