Gene Functional Analysis Using Protoplast Transient Assays

  • Ha-il Jung
  • Jiapei Yan
  • Zhiyang Zhai
  • Olena K. Vatamaniuk
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1284)

Abstract

The protoplast transient assay system has been widely used for rapid functional analyses of genes using cellular and biochemical approaches. This system has been increasingly employed for functional genetic studies using double-stranded (ds) RNA interference (RNAi). Here, we describe a modified procedure for the isolation of protoplasts from leaf mesophyll cells of 14-day-old Arabidopsis thaliana. This modification significantly simplifies and speeds up functional studies without compromising the yield and the viability of protoplasts. We also present the procedure for the isolation and transfection of protoplasts from mesophyll cells of an emerging model grass species, Brachypodium distachyon. Further, we detail procedures for RNAi-based functional studies of genes using transient expression of in vitro synthesized dsRNA in protoplasts.

Key words

Protoplasts Arabidopsis Brachypodium Transfection RNAi Synthetic dsRNAs 

References

  1. 1.
    Cocking EC (1960) A method for the isolation of plant protoplasts and vacuoles. Nature 187(4741):962–963CrossRefGoogle Scholar
  2. 2.
    Jiang F, Zhu J, Liu H-L (2013) Protoplasts: a useful research system for plant cell biology, especially dedifferentiation. Protoplasma 250(6):1231–1238CrossRefPubMedGoogle Scholar
  3. 3.
    Sheen J (2001) Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol 127(4):1466–1475CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Bargmann BOR, Marshall-Colon A, Efroni I, Ruffel S, Birnbaum KD, Coruzzi GM, Krouk G (2013) TARGET: a transient transformation system for genome-wide transcription factor target discovery. Mol Plant 6(3):978–980CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    De Sutter V, Vanderhaeghen R, Tilleman S, Lammertyn F, Vanhoutte I, Karimi M, Inzé D, Goossens A, Hilson P (2005) Exploration of jasmonate signalling via automated and standardized transient expression assays in tobacco cells. Plant J 44(6):1065–1076CrossRefPubMedGoogle Scholar
  6. 6.
    Ding Y, Cao J, Ni L, Zhu Y, Zhang A, Tan M, Jiang M (2013) ZmCPK11 is involved in abscisic acid-induced antioxidant defence and functions upstream of ZmMPK5 in abscisic acid signalling in maize. J Exp Bot 64(4):871–884CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Shi B, Ni L, Zhang A, Cao J, Zhang H, Qin T, Tan M, Zhang J, Jiang M (2012) OsDMI3 is a novel component of abscisic acid signaling in the induction of antioxidant defense in leaves of rice. Mol Plant 5(6):1359–1374CrossRefPubMedGoogle Scholar
  8. 8.
    Zhu Y, Zuo M, Liang Y, Jiang M, Zhang J, Scheller HV, Tan M, Zhang A (2013) MAP65-1a positively regulates H2O2 amplification and enhances brassinosteroid-induced antioxidant defence in maize. J Exp Bot 64(12):3787–3802CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Zhai Z, Sooksa-nguan T, Vatamaniuk OK (2009) Establishing RNA interference as a reverse-genetic approach for gene functional analysis in protoplasts. Plant Physiol 149(2):642–652CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Kim J, Somers DE (2010) Rapid Assessment of Gene Function in the Circadian Clock Using Artificial MicroRNA in Arabidopsis Mesophyll Protoplasts. Plant Physiol 154(2):611–621CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Li J-F, Zhang D (2014) Quantitative analysis of protein-protein interactions by Split Firefly Luciferase complementation in plant protoplasts. Curr Protoc Mol Biol 107:20.9.1-20.9.8, © 2014 by John Wiley & Sons, IncGoogle Scholar
  12. 12.
    Waterhouse PM, Helliwell CA (2003) Exploring plant genomes by RNA-induced gene silencing. Nat Rev Genet 4(1):29–38CrossRefPubMedGoogle Scholar
  13. 13.
    Schwab R, Ossowski S, Warthmann N, Weigel D (2010) Directed gene silencing with artificial microRNAs. Methods Mol Biol 592:71–88CrossRefPubMedGoogle Scholar
  14. 14.
    Burch-Smith TM, Schiff M, Liu Y, Dinesh-Kumar SP (2006) Efficient virus-induced gene silencing in Arabidopsis. Plant Physiol 142(1):21–27CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Dinesh-Kumar SP, Anandalakshmi R, Marathe R, Schiff M, Liu Y (2003) Virus-induced gene silencing. Methods Mol Biol 236:287–294PubMedGoogle Scholar
  16. 16.
    Lu R, Martin-Hernandez AM, Peart JR, Malcuit I, Baulcombe DC (2003) Virus-induced gene silencing in plants. Methods 30(4):296–303CrossRefPubMedGoogle Scholar
  17. 17.
    Li J-F, Chung HS, Niu Y, Bush J, McCormack M, Sheen J (2013) Comprehensive protein-based artificial MicroRNA screens for effective gene silencing in plants. Plant Cell Online 25(5):1507–1522CrossRefGoogle Scholar
  18. 18.
    Vogel J, Hill T (2008) High-efficiency Agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd21-3. Plant Cell Rep 27(3):471–478CrossRefPubMedGoogle Scholar
  19. 19.
    Sastry SS, Ross BM (1997) Nuclease activity of T7 RNA polymerase and the heterogeneity of transcription elongation complexes. J Biol Chem 272(13):8644–8652CrossRefPubMedGoogle Scholar
  20. 20.
    Zhai Z, Jung HI, Vatamaniuk OK (2009) Isolation of protoplasts from tissues of 14-day-old seedlings of Arabidopsis thaliana. J Vis Exp 30Google Scholar
  21. 21.
    Rong M, He B, McAllister WT, Durbin RK (1998) Promoter specificity determinants of T7 RNA polymerase. Proc Natl Acad Sci U S A 95(2):515–519CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Jung HI, Zhai Z, Vatamaniuk OK (2011) Direct transfer of synthetic double-stranded RNA into protoplasts of Arabidopsis thaliana. Methods Mol Biol 744:109–127CrossRefPubMedGoogle Scholar
  23. 23.
    Remans T, Smeets K, Opdenakker K, Mathijsen D, Vangronsveld J, Cuypers A (2008) Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations. Planta 227(6):1343–1349CrossRefPubMedGoogle Scholar
  24. 24.
    Udvardi MK, Czechowski T, Scheible W-R (2008) Eleven golden rules of quantitative RT-PCR. Plant Cell 20(7):1736–1737CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Heinemann U, Saenger W (1983) Crystallographic study of mechanism of ribonuclease T1-catalysed specific RNA hydrolysis. J Biomol Struct Dyn 1(2):523–538CrossRefPubMedGoogle Scholar
  26. 26.
    Jung HI, Gayomba SR, Yan J, Vatamaniuk OK (2014) Brachypodium dystachyon as a model system for studies of copper transport in cereal crops. Frontiers Plant Sci 5:236CrossRefGoogle Scholar
  27. 27.
    Vatamaniuk OK, Mari S, Lu YP, Rea PA (1999) AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proc Natl Acad Sci U S A 96(12):7110–7115CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Howden R, Goldsbrough PB, Andersen CR, Cobbett CS (1995) Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107(4):1059–1066CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  30. 30.
    Vatamaniuk OK, Mari S, Lu YP, Rea PA (2000) Mechanism of heavy metal ion activation of phytochelatin (PC) synthase: blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides. J Biol Chem 275(40):31451–31459CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ha-il Jung
    • 1
  • Jiapei Yan
    • 1
  • Zhiyang Zhai
    • 1
  • Olena K. Vatamaniuk
    • 1
  1. 1.Department of Crop and Soil SciencesCornell UniversityIthacaUSA

Personalised recommendations