Advertisement

Software-Assisted Stacking of Gene Modules Using GoldenBraid 2.0 DNA-Assembly Framework

  • Marta Vazquez-Vilar
  • Alejandro Sarrion-Perdigones
  • Peio Ziarsolo
  • Jose Blanca
  • Antonio Granell
  • Diego Orzaez
Part of the Methods in Molecular Biology book series (MIMB, volume 1284)

Abstract

GoldenBraid (GB) is a modular DNA assembly technology for plant multigene engineering based on type IIS restriction enzymes. GB speeds up the assembly of transcriptional units from standard genetic parts and facilitates the stacking of several genes within the same T-DNA in few days. GBcloning is software-assisted with a set of online tools. The GBDomesticator tool assists in the adaptation of DNA parts to the GBstandard. The combination of GB-adapted parts to build new transcriptional units is assisted by the GB TU Assembler tool. Finally, the assembly of multigene modules is simulated by the GB Binary Assembler. All the software tools are available at www.gbcloning.org. Here, we describe in detail the assembly methodology to create a multigene construct with three transcriptional units for polyphenol metabolic engineering in plants.

Key words

Synthetic Biology DNA assembly software Type IIS restriction enzymes Multigene engineering Metabolic engineering Plant biotechnology 

Notes

Acknowledgements

We want to thank the COST Action FA1006 for the support in the development of the Web tools. This work was supported by the Spanish Ministry of Economy and Competitiveness (grant no. BIO2010–15384). M. Vazquez-Vilar is recipient of a Junta de Ampliación de Estudios fellowship.

References

  1. 1.
    Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345. doi: 10.1038/nmeth.1318 CrossRefPubMedGoogle Scholar
  2. 2.
    Geu-Flores F, Nour-Eldin HH, Nielsen MT, Halkier BA (2007) USER fusion: a rapid and efficient method for simultaneous fusion and cloning of multiple PCR products. Nucleic Acids Res 35(7):e55. doi: 10.1093/nar/gkm106 CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Hartley JL, Temple GF, Brasch MA (2000) DNA cloning using in vitro site-specific recombination. Genome Res 10(11):1788–1795CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Zhang H, Jiang T (2010) Synthetic circuits, devices and modules. Protein Cell 1(11):974–978. doi: 10.1007/s13238-010-0133-8 CrossRefPubMedGoogle Scholar
  5. 5.
    Muller KM, Arndt KM (2012) Standardization in synthetic biology. Methods Mol Biol 813:23–43. doi: 10.1007/978-1-61779-412-4_2 CrossRefPubMedGoogle Scholar
  6. 6.
    Sarrion-Perdigones A, Falconi EE, Zandalinas SI, Juarez P, Fernandez-del-Carmen A, Granell A, Orzaez D (2011) GoldenBraid: an iterative cloning system for standardized assembly of reusable genetic modules. PLoS One 6(7):e21622. doi: 10.1371/journal.pone.0021622 CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Sarrion-Perdigones A, Palaci J, Granell A, Orzaez D (2014) Design and construction of multigenic constructs for plant biotechnology using the GoldenBraid cloning strategy. Methods Mol Biol 1116:133–151. doi: 10.1007/978-1-62703-764-8_10 CrossRefPubMedGoogle Scholar
  8. 8.
    Engler C, Gruetzner R, Kandzia R, Marillonnet S (2009) Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One 4(5):e5553. doi: 10.1371/journal.pone.0005553 CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Sarrion-Perdigones A, Vazquez-Vilar M, Palaci J, Castelijns B, Forment J, Ziarsolo P, Blanca J, Granell A, Orzaez D (2013) GoldenBraid 2.0: a comprehensive DNA assembly framework for plant synthetic biology. Plant Physiol 162(3):1618–1631, pp.113.217661 [pii]CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Mathews H, Clendennen SK, Caldwell CG, Liu XL, Connors K, Matheis N, Schuster DK, Menasco DJ, Wagoner W, Lightner J, Wagner DR (2003) Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell 15(8):1689–1703CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    De Jong WS, Eannetta NT, De Jong DM, Bodis M (2004) Candidate gene analysis of anthocyanin pigmentation loci in the Solanaceae. TAG Theoretical and applied genetics. Theoretische und angewandte Genetik 108(3):423–432. doi: 10.1007/s00122-003-1455-1 CrossRefPubMedGoogle Scholar
  12. 12.
    Adato A, Mandel T, Mintz-Oron S, Venger I, Levy D, Yativ M, Dominguez E, Wang Z, De Vos RC, Jetter R, Schreiber L, Heredia A, Rogachev I, Aharoni A (2009) Fruit-surface flavonoid accumulation in tomato is controlled by a SlMYB12-regulated transcriptional network. PLoS Genet 5(12):e1000777. doi: 10.1371/journal.pgen.1000777 CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Shimada S, Otsuki H, Sakuta M (2007) Transcriptional control of anthocyanin biosynthetic genes in the Caryophyllales. J Exp Bot 58(5):957–967, erl256 [pii]CrossRefPubMedGoogle Scholar
  14. 14.
    Ballester AR, Molthoff J, de Vos R, Hekkert B, Orzaez D, Fernandez-Moreno JP, Tripodi P, Grandillo S, Martin C, Heldens J, Ykema M, Granell A, Bovy A (2010) Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color. Plant Physiol 152(1):71–84. doi:10.1104/pp. 109.147322CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Butelli E, Titta L, Giorgio M, Mock HP, Matros A, Peterek S, Schijlen EG, Hall RD, Bovy AG, Luo J, Martin C (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26(11):1301–1308. doi: 10.1038/nbt.1506 CrossRefPubMedGoogle Scholar
  16. 16.
    Bedoya LC, Martinez F, Orzaez D, Daros JA (2012) Visual tracking of plant virus infection and movement using a reporter MYB transcription factor that activates anthocyanin biosynthesis. Plant Physiol 158(3):1130–1138, pp.111.192922 [pii]CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42(6):819–832CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Marta Vazquez-Vilar
    • 1
  • Alejandro Sarrion-Perdigones
    • 2
  • Peio Ziarsolo
    • 3
  • Jose Blanca
    • 3
  • Antonio Granell
    • 1
  • Diego Orzaez
    • 1
  1. 1.Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones CientíficasUniversidad Politécnica de ValenciaValenciaSpain
  2. 2.Verna and Marrs McLean Department of Biochemistry and Molecular BiologyBaylor College of MedicineHoustonUSA
  3. 3.Centro de Conservación y Mejora de la Agrodiversidad (COMAV)Universidad Politécnica de ValenciaValenciaSpain

Personalised recommendations