Case Study: Discovery of Inhibitors of the MDM2–p53 Protein-Protein Interaction

Part of the Methods in Molecular Biology book series (MIMB, volume 1278)

Abstract

The p53 protein, a tumor suppressor, is inactivated in many human cancers through mutations or by its interaction with an oncoprotein, MDM2. Blocking the MDM2–p53 protein-protein interaction has the effect of activating wild-type p53 and has been pursued as a novel anticancer strategy. Small-molecule inhibitors of the MDM2–p53 interaction have been discovered through various approaches, and a number of them have progressed into clinical trials for cancer treatment. Here, we describe the methods and techniques used in the discovery of small-molecule inhibitors of the MDM2–p53 interaction.

Key words

p53 MDM2 Protein-protein interaction Cancer therapy High-throughput screening Virtual screening 

References

  1. 1.
    Fry DC, Vassilev LT (2005) Targeting protein-protein interactions for cancer therapy. J Mol Med 83:955–963CrossRefPubMedGoogle Scholar
  2. 2.
    Murray JK, Gellman SH (2007) Targeting protein-protein interactions: lessons from p53/MDM2. Biopolymers 88:657–686CrossRefPubMedGoogle Scholar
  3. 3.
    Fridman JS, Lowe SW (2003) Control of apoptosis by p53. Oncogene 22:9030–9040CrossRefPubMedGoogle Scholar
  4. 4.
    Hainaut P, Hollstein M (2000) p53 and human cancer: the first ten thousand mutations. Adv Cancer Res 77:81–137CrossRefPubMedGoogle Scholar
  5. 5.
    Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310CrossRefPubMedGoogle Scholar
  6. 6.
    Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2:594–604CrossRefPubMedGoogle Scholar
  7. 7.
    Feki A, Irminger-Finger I (2004) Mutational spectrum of p53 mutations in primary breast and ovarian tumors. Crit Rev Oncol Hematol 52:103–116CrossRefPubMedGoogle Scholar
  8. 8.
    Momand J, Zambetti GP, Olson DC et al (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69:1237–1245CrossRefPubMedGoogle Scholar
  9. 9.
    Fakharzadeh SS, Trusko SP, George DL (1991) Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J 10:1565–1569PubMedCentralPubMedGoogle Scholar
  10. 10.
    Fakharzadeh SS, Rosenblum-Vos L, Murphy M et al (1993) Structure and organization of amplified DNA on double minutes containing the mdm2 oncogene. Genomics 15:283–290CrossRefPubMedGoogle Scholar
  11. 11.
    Lane DP, Crawford LV (1979) T antigen is bound to a host protein in SV40-transformed cells. Nature 278:261–263CrossRefPubMedGoogle Scholar
  12. 12.
    Linzer DI, Levine AJ (1979) Characterization of a 54 K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17:43–52CrossRefPubMedGoogle Scholar
  13. 13.
    DeLeo AB, Jay G, Appella E et al (1979) Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci U S A 76:2420–2424CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Bond GL, Hu W, Bond EE et al (2004) A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119:591–602CrossRefPubMedGoogle Scholar
  15. 15.
    Oliner JD, Kinzler KW, Meltzer PS et al (1992) Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358:80–83CrossRefPubMedGoogle Scholar
  16. 16.
    Zhou M, Gu L, Abshire TC et al (2000) Incidence and prognostic significance of MDM2 oncoprotein overexpression in relapsed childhood acute lymphoblastic leukemia. Leukemia 14:61–67CrossRefPubMedGoogle Scholar
  17. 17.
    Rayburn E, Zhang R, He J et al (2005) MDM2 and human malignancies: expression, clinical pathology, prognostic markers, and implications for chemotherapy. Curr Cancer Drug Targets 5:27–41CrossRefPubMedGoogle Scholar
  18. 18.
    Momand J, Jung D, Wilczynski S et al (1998) The MDM2 gene amplification database. Nucleic Acids Res 26:3453–3459CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Gunther T, Schneider-Stock R, Hackel C et al (2000) Mdm2 gene amplification in gastric cancer correlation with expression of Mdm2 protein and p53 alterations. Mod Pathol 13:621–626CrossRefPubMedGoogle Scholar
  20. 20.
    Bond GL, Hu W, Levine AJ (2005) MDM2 is a central node in the p53 pathway: 12 years and counting. Curr Cancer Drug Targets 5:3–8CrossRefPubMedGoogle Scholar
  21. 21.
    Jones SN, Roe AE, Donehower LA et al (1995) Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378:206–208CrossRefPubMedGoogle Scholar
  22. 22.
    de Oca M, Luna R, Wagner DS, Lozano G (1995) Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378:203–206CrossRefGoogle Scholar
  23. 23.
    Vassilev LT (2007) MDM2 inhibitors for cancer therapy. Trends Mol Med 13:23–31CrossRefPubMedGoogle Scholar
  24. 24.
    Chene P (2003) Inhibiting the p53-MDM2 interaction: an important target for cancer therapy. Nat Rev Cancer 3:102–109CrossRefPubMedGoogle Scholar
  25. 25.
    Shangary S, Wang S (2008) Targeting the MDM2-p53 interaction for cancer therapy. Clin Cancer Res 14:5318–5324CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Freedman DA, Wu L, Levine AJ (1999) Functions of the MDM2 oncoprotein. Cell Mol Life Sci 55:96–107CrossRefPubMedGoogle Scholar
  27. 27.
    Juven-Gershon T, Oren M (1999) Mdm2: the ups and downs. Mol Med 5:71–83PubMedCentralPubMedGoogle Scholar
  28. 28.
    Wu X, Bayle JH, Olson D et al (1993) The p53-mdm-2 autoregulatory feedback loop. Genes Dev 7:1126–1132CrossRefPubMedGoogle Scholar
  29. 29.
    Kussie PH, Gorina S, Marechal V et al (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274:948–953CrossRefPubMedGoogle Scholar
  30. 30.
    Millard M, Pathania D, Grande F et al (2011) Small-molecule inhibitors of p53-MDM2 interaction: the 2006-2010 update. Curr Pharm Des 17:536–559CrossRefPubMedGoogle Scholar
  31. 31.
    Zhan C, Lu W (2011) Peptide activators of the p53 tumor suppressor. Curr Pharm Des 17:603–609CrossRefPubMedGoogle Scholar
  32. 32.
    Zak K, Pecak A, Rys B et al (2013) Mdm2 and MdmX inhibitors for the treatment of cancer: a patent review (2011–present). Expert Opin Ther Pat 23:425–448CrossRefPubMedGoogle Scholar
  33. 33.
    Vassilev LT (2004) Small-molecule antagonists of p53-MDM2 binding: research tools and potential therapeutics. Cell Cycle 3:419–421CrossRefPubMedGoogle Scholar
  34. 34.
    Ding K, Lu Y, Nikolovska-Coleska Z et al (2006) Structure-based design of spiro-oxindoles as potent, specific small-molecule inhibitors of the MDM2-p53 interaction. J Med Chem 49:3432–3435CrossRefPubMedGoogle Scholar
  35. 35.
    Ding K, Lu Y, Nikolovska-Coleska Z et al (2005) Structure-based design of potent non-peptide MDM2 inhibitors. J Am Chem Soc 127:10130–10131CrossRefPubMedGoogle Scholar
  36. 36.
    Grasberger BL, Lu T, Schubert C et al (2005) Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells. J Med Chem 48:909–912CrossRefPubMedGoogle Scholar
  37. 37.
    Parks DJ, Lafrance LV, Calvo RR et al (2005) 1,4-Benzodiazepine-2,5-diones as small molecule antagonists of the HDM2-p53 interaction: discovery and SAR. Bioorg Med Chem Lett 15:765–770CrossRefPubMedGoogle Scholar
  38. 38.
    Koblish HK, Zhao S, Franks CF et al (2006) Benzodiazepinedione inhibitors of the Hdm2:p53 complex suppress human tumor cell proliferation in vitro and sensitize tumors to doxorubicin in vivo. Mol Cancer Ther 5:160–169CrossRefPubMedGoogle Scholar
  39. 39.
    Allen JG, Bourbeau MP, Wohlhieter GE et al (2009) Discovery and optimization of chromenotriazolopyrimidines as potent inhibitors of the mouse double minute 2-tumor protein 53 protein–protein interaction. J Med Chem 52:7044–7053CrossRefPubMedGoogle Scholar
  40. 40.
    Rew Y, Sun D, Gonzalez-Lopez De Turiso F et al (2012) Structure-based design of novel inhibitors of the MDM2-p53 interaction. J Med Chem 55:4936–4954CrossRefPubMedGoogle Scholar
  41. 41.
    Graves B, Thompson T, Xia M et al (2012) Activation of the p53 pathway by small-molecule-induced MDM2 and MDMX dimerization. Proc Natl Acad Sci U S A 109:11788–11793CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Miyazaki M, Kawato H, Naito H et al (2012) Discovery of novel dihydroimidazothiazole derivatives as p53-MDM2 protein-protein interaction inhibitors: synthesis, biological evaluation and structure-activity relationships. Bioorg Med Chem Lett 22:6338–6342CrossRefPubMedGoogle Scholar
  43. 43.
    Yin H, Lee GI, Park HS et al (2005) Terphenyl-based helical mimetics that disrupt the p53/HDM2 interaction. Angew Chem Int Ed Engl 44:2704–2707CrossRefPubMedGoogle Scholar
  44. 44.
    Chen L, Yin H, Farooqi B et al (2005) p53 alpha-helix mimetics antagonize p53/MDM2 interaction and activate p53. Mol Cancer Ther 4:1019–1025CrossRefPubMedGoogle Scholar
  45. 45.
    Lu Y, Nikolovska-Coleska Z, Fang X et al (2006) Discovery of a nanomolar inhibitor of the human murine double minute 2 (MDM2)-p53 interaction through an integrated, virtual database screening strategy. J Med Chem 49:3759–3762CrossRefPubMedGoogle Scholar
  46. 46.
    Galatin PS, Abraham DJ (2004) A nonpeptidic sulfonamide inhibits the p53-mdm2 interaction and activates p53-dependent transcription in mdm2-overexpressing cells. J Med Chem 47:4163–4165CrossRefPubMedGoogle Scholar
  47. 47.
    Vassilev LT, Vu BT, Graves B et al (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844–848CrossRefPubMedGoogle Scholar
  48. 48.
    Schasfoort RBM, Tudos AJ (2008) Handbook of surface plasmon resonance. Royal Society of Chemistry Publishing, Cambridge, UKCrossRefGoogle Scholar
  49. 49.
    Fry DC, Graves B, Vassilev LT (2005) Development of E3-substrate (MDM2-p53)-binding inhibitors: structural aspects. Methods Enzymol 399:622–633CrossRefPubMedGoogle Scholar
  50. 50.
    Vu B, Wovkulich P, Pizzolato G et al (2013) Discovery of RG7112: A small-molecule MDM2 inhibitor in clinical development. ACS Med Chem Lett 4:466–469Google Scholar
  51. 51.
    Ericsson UB, Hallberg BM, Detitta GT et al (2006) Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal Biochem 357:289–298CrossRefPubMedGoogle Scholar
  52. 52.
    Lo MC, Aulabaugh A, Jin G et al (2004) Evaluation of fluorescence-based thermal shift assays for hit identification in drug discovery. Anal Biochem 332:153–159CrossRefPubMedGoogle Scholar
  53. 53.
    Shangary S, Qin D, McEachern D et al (2008) Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci U S A 105:3933–3938CrossRefPubMedCentralPubMedGoogle Scholar
  54. 54.
    Yu S, Qin D, Shangary S et al (2009) Potent and orally active small-molecule inhibitors of the MDM2-p53 interaction. J Med Chem 52:7970–7973CrossRefPubMedCentralPubMedGoogle Scholar
  55. 55.
    Garcia-Echeverria C, Chene P, Blommers MJ et al (2000) Discovery of potent antagonists of the interaction between human double minute 2 and tumor suppressor p53. J Med Chem 43:3205–3208CrossRefPubMedGoogle Scholar
  56. 56.
    Nikolovska-Coleska Z, Wang R, Fang X et al (2004) Development and optimization of a binding assay for the XIAP BIR3 domain using fluorescence polarization. Anal Biochem 332:261–273CrossRefPubMedGoogle Scholar
  57. 57.
    Huang X (2003) Fluorescence polarization competition assay: the range of resolvable inhibitor potency is limited by the affinity of the fluorescent ligand. J Biomol Screen 8:34–38CrossRefPubMedGoogle Scholar
  58. 58.
    Kenakin TP (1993) Pharmacologic analysis of drug-receptor interaction, 2nd edn. Raven, New YorkGoogle Scholar
  59. 59.
    Munson PJ, Rodbard D (1988) An exact correction to the “Cheng-Prusoff” correction. J Recept Res 8:533–546PubMedGoogle Scholar
  60. 60.
    Zhang R, Mayhood T, Lipari P et al (2004) Fluorescence polarization assay and inhibitor design for MDM2/p53 interaction. Anal Biochem 331:138–146CrossRefPubMedGoogle Scholar
  61. 61.
    Kutzki O, Park HS, Ernst JT et al (2002) Development of a potent Bcl-x(L) antagonist based on alpha-helix mimicry. J Am Chem Soc 124:11838–11839CrossRefPubMedGoogle Scholar
  62. 62.
    Boettcher A, Buschmann N, Furet P, et al. (2008) 3-imidazolyl-indoles for the treatment of proliferative diseases. US Patent WO 2008119741Google Scholar
  63. 63.
    Go ML, Wu X, Liu XL (2005) Chalcones: an update on cytotoxic and chemoprotective properties. Curr Med Chem 12:481–499CrossRefPubMedGoogle Scholar
  64. 64.
    Stoll R, Renner C, Hansen S et al (2001) Chalcone derivatives antagonize interactions between the human oncoprotein MDM2 and p53. Biochemistry 40:336–344CrossRefPubMedGoogle Scholar
  65. 65.
    Uoto K, Kawato H, Sugimoto Y, et al. (2009) Imidazothiazole derivative having 4,7-diazaspiro[2.5]octane ring structure. US Patent WO/2009/151069Google Scholar
  66. 66.
    Michelsen K, Jordan JB, Lewis J et al (2012) Ordering of the N-terminus of human MDM2 by small molecule inhibitors. J Am Chem Soc 134:17059–17067CrossRefPubMedGoogle Scholar
  67. 67.
    Lin J, Chen J, Elenbaas B et al (1994) Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev 8:1235–1246CrossRefPubMedGoogle Scholar
  68. 68.
    Bottger V, Bottger A, Howard SF et al (1996) Identification of novel mdm2 binding peptides by phage display. Oncogene 13:2141–2147PubMedGoogle Scholar
  69. 69.
    Bowman AL, Nikolovska-Coleska Z, Zhong H et al (2007) Small molecule inhibitors of the MDM2-p53 interaction discovered by ensemble-based receptor models. J Am Chem Soc 129:12809–12814CrossRefPubMedGoogle Scholar
  70. 70.
    Jones G, Willett P, Glen RC et al (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748CrossRefPubMedGoogle Scholar
  71. 71.
    Verdonk ML, Cole JC, Hartshorn MJ et al (2003) Improved protein-ligand docking using GOLD. Proteins 52:609–623CrossRefPubMedGoogle Scholar
  72. 72.
    Eldridge MD, Murray CW, Auton TR et al (1997) Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J Comput Aided Mol Des 11:425–445CrossRefPubMedGoogle Scholar
  73. 73.
    Wang R, Lai L, Wang W (2002) Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput Aided Mol Des 16:11–26CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Comprehensive Cancer Center and Departments of Internal MedicineUniversity of MichiganAnn ArborUSA
  2. 2.Pharmacology and Medicinal ChemistryUniversity of MichiganAnn ArborUSA

Personalised recommendations