Advertisement

NF-kappa B pp 355-370 | Cite as

Control of NF-κB Subunits by Ubiquitination

  • Patricia E. Collins
  • Amy Colleran
  • Ruaidhrí J. CarmodyEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1280)

Abstract

NF-κB is an essential regulator of inflammation and is also required for normal immune development and homeostasis. The inducible activation of NF-κB by a wide range of immuno-receptors such as the toll-like receptors (TLR), Tumour Necrosis Factor receptor (TNFR), and antigen T cell and B cell receptors requires the ubiquitin-triggered proteasomal degradation of IκBα to promote the nuclear translocation and transcriptional activity of NF-κB dimers. More recently, an additional role for ubiquitination and proteasomal degradation in the control of NF-κB activity has been uncovered. In this case, it is the ubiquitination and proteasomal degradation of the NF-κB subunits that play a critical role in the termination of the NF-κB-dependent transcriptional response induced by receptor activation. The primary trigger of NF-κB ubiquitination is DNA binding by NF-κB dimers and is further controlled by specific phosphorylation events which regulate the interaction of NF-κB with the E3 ligase complex and the deubiquitinase enzyme USP7. It is the balance between ubiquitination and deubiquitination that shapes the NF-κB-mediated transcriptional response. This chapter describes methods for the analysis of NF-κB ubiquitination.

Key words

NF-κB Ubiquitin Immunoprecipitation Immunoblotting 

References

  1. 1.
    Hershko A (1983) Ubiquitin: roles in protein modification and breakdown. Cell 34:11–12CrossRefPubMedGoogle Scholar
  2. 2.
    Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229CrossRefPubMedGoogle Scholar
  3. 3.
    Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533CrossRefPubMedGoogle Scholar
  4. 4.
    Bernassola F, Karin M, Ciechanover A, Melino G (2008) The HECT family of E3 ubiquitin ligases: multiple players in cancer development. Cancer Cell 14:10–21CrossRefPubMedGoogle Scholar
  5. 5.
    Petroski MD, Deshaies RJ (2005) Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 6:9–20CrossRefPubMedGoogle Scholar
  6. 6.
    Chen ZJ, Sun LJ (2009) Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 33:275–286CrossRefPubMedGoogle Scholar
  7. 7.
    Adhikari A, Chen ZJ (2009) Diversity of polyubiquitin chains. Dev Cell 16:485–486CrossRefPubMedGoogle Scholar
  8. 8.
    Chen J, Chen ZJ (2013) Regulation of NF-kappaB by ubiquitination. Curr Opin Immunol 25:4–12CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Spencer E, Jiang J, Chen ZJ (1999) Signal-induced ubiquitination of IkappaBalpha by the F-box protein Slimb/beta-TrCP. Genes Dev 13:284–294CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Lamothe B, Besse A, Campos AD, Webster WK, Wu H, Darnay BG (2007) Site-specific Lys-63-linked tumor necrosis factor receptor-associated factor 6 auto-ubiquitination is a critical determinant of I kappa B kinase activation. J Biol Chem 282:4102–4112CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ (2006) Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell 22:245–257CrossRefPubMedGoogle Scholar
  12. 12.
    Fong A, Sun SC (2002) Genetic evidence for the essential role of beta-transducin repeat-containing protein in the inducible processing of NF-kappa B2/p100. J Biol Chem 277:22111–22114CrossRefPubMedGoogle Scholar
  13. 13.
    Carmody RJ, Ruan Q, Palmer S, Hilliard B, Chen YH (2007) Negative regulation of toll-like receptor signaling by NF-kappaB p50 ubiquitination blockade. Science 317:675–678CrossRefPubMedGoogle Scholar
  14. 14.
    Saccani S, Marazzi I, Beg AA, Natoli G (2004) Degradation of promoter-bound p65/RelA is essential for the prompt termination of the nuclear factor kappaB response. J Exp Med 200:107–113CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Geng H, Wittwer T, Dittrich-Breiholz O, Kracht M, Schmitz ML (2009) Phosphorylation of NF-kappaB p65 at Ser468 controls its COMMD1-dependent ubiquitination and target gene-specific proteasomal elimination. EMBO Rep 10:381–386CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Ryo A, Suizu F, Yoshida Y, Perrem K, Liou YC, Wulf G, Rottapel R, Yamaoka S, Lu KP (2003) Regulation of NF-kappaB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol Cell 12:1413–1426CrossRefPubMedGoogle Scholar
  17. 17.
    Maine GN, Mao X, Komarck CM, Burstein E (2007) COMMD1 promotes the ubiquitination of NF-kappaB subunits through a cullin-containing ubiquitin ligase. EMBO J 26:436–447CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Mao X, Gluck N, Li D, Maine GN, Li H, Zaidi IW, Repaka A, Mayo MW, Burstein E (2009) GCN5 is a required cofactor for a ubiquitin ligase that targets NF-kappaB/RelA. Genes Dev 23:849–861CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Li H, Wittwer T, Weber A, Schneider H, Moreno R, Maine GN, Kracht M, Schmitz ML, Burstein E (2011) Regulation of NF-kappaB activity by competition between RelA acetylation and ubiquitination. Oncogene 31: 611–623Google Scholar
  20. 20.
    Colleran A, Collins PE, O’Carroll C, Ahmed A, Mao X, McManus B, Kiely PA, Burstein E, Carmody RJ (2013) Deubiquitination of NF-kappaB by Ubiquitin-Specific Protease-7 promotes transcription. Proc Natl Acad Sci U S A 110:618–623CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Patricia E. Collins
    • 1
  • Amy Colleran
    • 1
  • Ruaidhrí J. Carmody
    • 1
    Email author
  1. 1.Institute of Infection, Immunology and Inflammation, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK

Personalised recommendations