In Vitro and In Vivo Methodologies for Studying the Sigma 54-Dependent Transcription

  • Martin BuckEmail author
  • Christoph Engl
  • Nicolas Joly
  • Goran Jovanovic
  • Milija Jovanovic
  • Edward Lawton
  • Christopher McDonald
  • Jörg Schumacher
  • Christopher Waite
  • Nan Zhang
Part of the Methods in Molecular Biology book series (MIMB, volume 1276)


Here we describe approaches and methods to assaying in vitro the major variant bacterial sigma factor, Sigma 54 (σ54), in a purified system. We include the complete transcription system, binding interactions between σ54 and its activators, as well as the self-assembly and the critical ATPase activity of the cognate activators which serve to remodel the closed promoter complexes. We also present in vivo methodologies that are used to study the impact of physiological processes, metabolic states, global signalling networks, and cellular architecture on the control of σ54-dependent gene expression.

Key words

Transcription activation RNA polymerase σ54 Open and closed promoter complexes AAA+ proteins Bacterial enhancer binding proteins ATPase 



This work was supported by BBSRC (BB/J002828/1), Wellcome Trust (WT093044MA), and Leverhulme Trust (F/07 058/BM) project grants.


  1. 1.
    Joly N, Zhang N, Buck M (2012) ATPase site architecture is required for self-assembly and remodeling activity of a hexameric AAA+ transcriptional activator. Mol Cell 47:484–490CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Joly N, Engl C, Jovanovic G et al (2010) Managing membrane stress: the phage shock protein (Psp) response, from molecular mechanisms to physiology. FEMS Microbiol Rev 34:797–827PubMedGoogle Scholar
  3. 3.
    Jovanovic M, James EH, Burrows PC et al (2011) Regulation of the co-evolved HrpR and HrpS AAA+ proteins required for Pseudomonas syringae pathogenicity. Nat Commun 2:177CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Rappas M, Schumacher J, Beuron F et al (2005) Structural insights into the activity of enhancer-binding proteins. Science 307:1972–1975CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Bose D, Pape T, Burrows PC et al (2008) Organization of an activator-bound RNA polymerase holoenzyme. Mol Cell 32:337–346CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Burrows PC, Joly N, Cannon WV et al (2009) Coupling sigma factor conformation to RNA polymerase reorganisation for DNA melting. J Mol Biol 387:306–319CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Sysoeva TA, Chowdhury S, Guo L et al (2013) Nucleotide-induced asymmetry within ATPase activator ring drives σ54-RNAP interaction and ATP hydrolysis. Genes Dev 27:2500–2511CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Mehta P, Jovanovic G, Lenn T et al (2013) Dynamics and stoichiometry of a regulated enhancer-binding protein in live Escherichia coli cells. Nat Commun 4:1997CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Belogurov GA, Vassylyeva MN, Svetlov V et al (2007) Structural basis for converting a general transcription factor into an operon-specific virulence regulator. Mol Cell 26:117–129CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Sasse-Dwight S, Gralla JD (1990) Role of eukaryotic-type functional domains found in the prokaryotic enhancer receptor factor sigma 54. Cell 62:945–954CrossRefPubMedGoogle Scholar
  11. 11.
    Joly N, Schumacher J, Buck M (2006) Heterogeneous nucleotide occupancy stimulates functionality of phage shock protein F, an AAA+ transcriptional activator. J Biol Chem 281:34997–35007CrossRefPubMedGoogle Scholar
  12. 12.
    Kassavetis GA, Elliott T, Rabussay DP et al (1983) Initiation of transcription at phage T4 late promoters with purified RNA polymerase. Cell 33:887–897CrossRefPubMedGoogle Scholar
  13. 13.
    Vassylyev DG, Vassylyeva MN, Zhang J et al (2007) Structural basis for substrate loading in bacterial RNA polymerase. Nature 448:163–168CrossRefPubMedGoogle Scholar
  14. 14.
    Nash HA, Robertson CA, Flamm E et al (1987) Overproduction of Escherichia coli integration host factor, a protein with nonidentical subunits. J Bacteriol 169:4124–4127PubMedCentralPubMedGoogle Scholar
  15. 15.
    Cannon WV, Gallegos MT, Buck M (2000) Isomerization of a binary sigma-promoter DNA complex by transcription activators. Nat Struct Biol 7:594–601CrossRefPubMedGoogle Scholar
  16. 16.
    Cannon WV, Schumacher J, Buck M (2004) Nucleotide-dependent interactions between a fork junction-RNA polymerase complex and an AAA+ transcriptional activator protein. Nucleic Acids Res 32:4596–4608CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Chen B, Sysoeva TA, Chowdhury S et al (2009) ADPase activity of recombinantly expressed thermotolerant ATPases may be caused by copurification of adenylate kinase of Escherichia coli. FEBS J 276:807–815CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Babst M, Wendland B, Estepa EJ et al (1998) The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J 17:2982–2993CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Schumacher J, Zhang X, Jones S et al (2004) ATP-dependent transcriptional activation by bacterial PspF AAA+ protein. J Mol Biol 338:863–875CrossRefPubMedGoogle Scholar
  20. 20.
    Schumacher J, Joly N, Claeys-Bouuaert IL et al (2008) Mechanism of homotropic control to coordinate hydrolysis in a hexameric AAA+ ring ATPase. J Mol Biol 381:1–12CrossRefPubMedGoogle Scholar
  21. 21.
    Schumacher J, Joly N, Rappas M et al (2007) Sensor I threonine of the AAA+ ATPase transcriptional activator PspF is involved in coupling nucleotide triphosphate hydrolysis to the restructuring of sigma 54-RNA polymerase. J Biol Chem 282:9825–9833CrossRefPubMedGoogle Scholar
  22. 22.
    Norby JG (1998) Coupled assay of Na+, K+-ATPase activity. Methods Enzymol 156:116–119CrossRefGoogle Scholar
  23. 23.
    Sarkar G, Edery I, Sonenberg N (1985) Photoaffinity labeling of the cap-binding protein complex with ATP/dATP. Differential labeling of free eukaryotic initiation factor 4A and the eukaryotic initiation factor 4A component of the cap-binding protein complex with [alpha-32P]ATP/dATP. J Biol Chem 260:13831–13837PubMedGoogle Scholar
  24. 24.
    Burrows PC, Wigneshweraraj SR, Buck M (2008) Protein-DNA interactions that govern AAA+ activator-dependent bacterial transcription initiation. J Mol Biol 375:43–58CrossRefPubMedGoogle Scholar
  25. 25.
    Zhang N, Joly N, Buck M (2012) A common feature from different subunits of a homomeric AAA+ protein contacts three spatially distinct transcription elements. Nucleic Acids Res 40:9139–9152CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Miller JH (1992) A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  28. 28.
    Cherepanov PP, Wackernagel W (1995) Gene disruption in Escherichia coli: TcR and KmR 409 cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158:9–14CrossRefPubMedGoogle Scholar
  29. 29.
    Ried JL, Collmer A (1987) An nptI-sacB-sacR cartridge for constructing directed, unmarked mutations in gram-negative bacteria by marker exchange-eviction mutagenesis. Gene 57:239–246CrossRefPubMedGoogle Scholar
  30. 30.
    Yakovleva GM, Kim SK, Wanner BL (1998) Phosphate-independent expression of the carbon-phosphorus lyase activity of Escherichia coli. Appl Microbiol Biotechnol 49:573–578CrossRefPubMedGoogle Scholar
  31. 31.
    Sarkar N, Cao GJ, Jain C (2002) Identification of multicopy suppressors of the pcnB plasmid copy number defect in Escherichia coli. Mol Genet Genomics 268:62–69CrossRefPubMedGoogle Scholar
  32. 32.
    Wang L, Gralla JD (1998) Multiple in vivo roles for the −12-region elements of Sigma 54 promoters. J Bacteriol 180:5626–5631PubMedCentralPubMedGoogle Scholar
  33. 33.
    Simons RW, Houman F, Kleckner N (1987) Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 53:85–96CrossRefPubMedGoogle Scholar
  34. 34.
    Silva-Rocha R, Martínez-García E, Calles B et al (2013) The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Res 41:666–675CrossRefGoogle Scholar
  35. 35.
    Karimova G, Pidoux J, Ullmann A et al (1998) A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A 95:5752–5756CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Karimova G, Dautin N, Ladant D (2005) Interaction network among Escherichia coli membrane proteins involved in cell division as revealed by bacterial two-hybrid analysis. J Bacteriol 187:2233–2243CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Crocker JC, Grier DG (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179:298–310CrossRefGoogle Scholar
  38. 38.
    Lenn T, Gkekas CN, Bernard L et al (2011) Measuring the stoichiometry of functional PspA complexes in living bacterial cells by single molecule photobleaching. Chem Commun 47:400–402CrossRefGoogle Scholar
  39. 39.
    Chung SH, Kennedy RA (1991) Forward-backward non-linear filtering technique for extracting small biological signals from noise. J Neurosci Methods 40:71–86CrossRefPubMedGoogle Scholar
  40. 40.
    Kuo SC, Gelles J, Steuer E et al (1991) A model for kinesin movement from nanometer level movements of kinesin and cytoplasmic dynein and force measurements. J Cell Sci 14:135–138CrossRefGoogle Scholar
  41. 41.
    Lenn T, Leake MC, Mullineaux CW (2008) Clustering and dynamics of cytochrome bd-I complexes in the Escherichia coli plasma membrane in vivo. Mol Microbiol 70:1397–1407CrossRefPubMedGoogle Scholar
  42. 42.
    Schumacher J, Joly N, Rappas M et al (2006) Structures and organisation of AAA+ enhancer binding proteins in transcriptional activation. J Struct Biol 156:190–199CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Martin Buck
    • 1
    Email author
  • Christoph Engl
    • 1
  • Nicolas Joly
    • 1
    • 2
  • Goran Jovanovic
    • 1
  • Milija Jovanovic
    • 1
  • Edward Lawton
    • 1
  • Christopher McDonald
    • 1
  • Jörg Schumacher
    • 1
  • Christopher Waite
    • 1
  • Nan Zhang
    • 1
  1. 1.Department of Life SciencesImperial College LondonLondonUK
  2. 2.Equipe Nanomanipulation de Biomolecules, Institut Jacques Monod – UMR7592CNRS – Universite ParisParis Cedex 13France

Personalised recommendations