Monitoring Translocation of Multisubunit RNA Polymerase Along the DNA with Fluorescent Base Analogues

  • Anssi M. Malinen
  • Matti Turtola
  • Georgiy A. Belogurov
Part of the Methods in Molecular Biology book series (MIMB, volume 1276)


Here we describe a direct fluorescence method that reports real-time occupancies of the pre- and post-translocated state of multisubunit RNA polymerase. In a stopped-flow setup, this method is capable of resolving a single base-pair translocation motion of RNA polymerase in real time. In a conventional spectrofluorometer, this method can be employed for studies of the time-averaged distribution of RNA polymerase on the DNA template. This method utilizes commercially available base analogue fluorophores integrated into template DNA strand in place of natural bases. We describe two template DNA strand designs where translocation of RNA polymerase from a pre-translocation to a post-translocation state results in disruption of stacking interactions of fluorophore with neighboring bases, with a concomitant large increase in fluorescence intensity.

Key words

Transcription RNA polymerase Translocation Fluorescence Base analogue Stopped-flow Rapid quench-flow 



This work was supported by the Academy of Finland grants 130581 and 263713 to G.A.B. Essential equipment was contributed by Walter and Lisi Wahl Foundation.


  1. 1.
    von Hippel PH (1998) An integrated model of the transcription complex in elongation, termination, and editing. Science 281:660–665CrossRefGoogle Scholar
  2. 2.
    Svetlov V, Nudler E (2009) Macromolecular micromovements: how RNA polymerase translocates. Curr Opin Struct Biol 19:701–707CrossRefPubMedGoogle Scholar
  3. 3.
    Zhang J, Landick R (2009) Substrate Loading, Nucleotide Addition, and Translocation by RNA Polymerase. In: Buc H, Strick T (eds) RNA polymerases as molecular motors. Royal Society of Chemistry, Cambridge, pp 206–234CrossRefGoogle Scholar
  4. 4.
    Erie DA, Kennedy SR (2009) Forks, pincers, and triggers: the tools for nucleotide incorporation and translocation in multi-subunit RNA polymerases. Curr Opin Struct Biol 19:708–714CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Kireeva M, Kashlev M, Burton ZF (2010) Translocation by multi-subunit RNA polymerases. Biochim Biophys Acta Gene Regul Mech 1799:389–401CrossRefGoogle Scholar
  6. 6.
    Cheung ACM, Cramer P (2012) A movie of RNA polymerase II transcription. Cell 149:1431–1437CrossRefPubMedGoogle Scholar
  7. 7.
    Hawkins ME (2007) Synthesis, purification and sample experiment for fluorescent pteridine-containing DNA: tools for studying DNA interactive systems. Nat Protoc 2:1013–1021CrossRefPubMedGoogle Scholar
  8. 8.
    Malinen AM, Turtola M, Parthiban M et al (2012) Active site opening and closure control translocation of multisubunit RNA polymerase. Nucleic Acids Res 40:7442–7451CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Artsimovitch I, Svetlov V, Nemetski SM et al (2011) Tagetitoxin inhibits RNA polymerase through trapping of the trigger loop. J Biol Chem 286:40395–40400CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Belogurov GA, Vassylyeva MN, Sevostyanova A et al (2009) Transcription inactivation through local refolding of the RNA polymerase structure. Nature 457:332–335CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Holmes SF, Foster JE, Erie DA (2003) Kinetics of multisubunit RNA polymerases: experimental methods and data analysis. Methods Enzymol 371:71–81CrossRefPubMedGoogle Scholar
  13. 13.
    Nedialkov YA, Gong XQ, Yamaguchi Y et al (2003) Assay of transient state kinetics of RNA polymerase II elongation. Methods Enzymol 371:252–264CrossRefPubMedGoogle Scholar
  14. 14.
    Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11:36–42Google Scholar
  15. 15.
    Green MR, Sambrook J (2012) Separation of RNA according to Size: Electrophoresis of RNA through Denaturing Urea Polyacrylamide Gels. In: Green MR, Sambrook J (eds) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York, pp 393–400Google Scholar
  16. 16.
    Summer H, Grämer R, Dröge P (2009) Denaturing urea polyacrylamide gel electrophoresis (Urea PAGE). J Vis Exp 32:1485PubMedGoogle Scholar
  17. 17.
    Johnson KA (2009) Fitting enzyme kinetic data with KinTek global kinetic explorer. Methods Enzymol 467:601–626CrossRefPubMedGoogle Scholar
  18. 18.
    Yuzenkova Y, Zenkin N (2010) Central role of the RNA polymerase trigger loop in intrinsic RNA hydrolysis. Proc Natl Acad Sci U S A 107:10878–10883CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Zhang J, Palangat M, Landick R (2010) Role of the RNA polymerase trigger loop in catalysis and pausing. Nat Struct Mol Biol 17:99–104CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Hein PP, Palangat M, Landick R (2011) RNA transcript 3′-proximal sequence affects translocation bias of RNA polymerase. Biochemistry 50:7002–7014CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Barshop BA, Wrenn RF, Frieden C (1983) Analysis of numerical methods for computer simulation of kinetic processes: development of KINSIM – a flexible, portable system. Anal Biochem 130:134–145CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Anssi M. Malinen
    • 1
  • Matti Turtola
    • 1
  • Georgiy A. Belogurov
    • 1
  1. 1.Department of BiochemistryUniversity of TurkuTurkuFinland

Personalised recommendations