Advertisement

Metabonomics pp 161-193 | Cite as

The Strengths and Weaknesses of NMR Spectroscopy and Mass Spectrometry with Particular Focus on Metabolomics Research

  • Abdul-Hamid M. Emwas
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1277)

Abstract

Mass spectrometry (MS) and nuclear magnetic resonance (NMR) have evolved as the most common techniques in metabolomics studies, and each brings its own advantages and limitations. Unlike MS spectrometry, NMR spectroscopy is quantitative and does not require extra steps for sample preparation, such as separation or derivatization. Although the sensitivity of NMR spectroscopy has increased enormously and improvements continue to emerge steadily, this remains a weak point for NMR compared with MS. MS-based metabolomics provides an excellent approach that can offer a combined sensitivity and selectivity platform for metabolomics research. Moreover, different MS approaches such as different ionization techniques and mass analyzer technology can be used in order to increase the number of metabolites that can be detected. In this chapter, the advantages, limitations, strengths, and weaknesses of NMR and MS as tools applicable to metabolomics research are highlighted.

Key words

NMR MS LC-MS GC-MS Metabolomics Spectroscopy Metabonomics 

Notes

Acknowledgments

We would like to thank King Abdullah University of Science and Technology for financial support and Dr. Virginia Unkefer and Dr. Zeyad Al Talla from KAUST and Dr. Christina Morris for their assistance and helpful editorial remarks.

References

  1. 1.
    Al-Talla ZA, Akrawi SH, Tolley LT et al (2011) Bioequivalence assessment of two formulations of ibuprofen. Drug Des Devel Ther 5:427–433PubMedCentralPubMedGoogle Scholar
  2. 2.
    Ibanez C, Simo C, Barupal DK et al (2013) A new metabolomic workflow for early detection of Alzheimer’s disease. J Chromatogr A 1302:65–71PubMedGoogle Scholar
  3. 3.
    Wang X, Li K, Adams E et al (2013) Capillary electrophoresis-mass spectrometry in metabolomics: the potential for driving drug discovery and development. Curr Drug Metab 14:807–813PubMedGoogle Scholar
  4. 4.
    Zheng H, Clausen MR, Dalsgaard TK et al (2013) Time-saving design of experiment protocol for optimization of LC-MS data processing in metabolomic approaches. Anal Chem 85:7109–7116PubMedGoogle Scholar
  5. 5.
    Farag MA, Wessjohann LA (2012) Metabolome classification of commercial hypericum perforatum (St. John’s Wort) preparations via UPLC-qTOF-MS and chemometrics. Planta Med 78:488–496PubMedGoogle Scholar
  6. 6.
    Wang B, Chen D, Chen Y et al (2012) Metabonomic profiles discriminate hepatocellular carcinoma from liver cirrhosis by ultraperformance liquid chromatography-mass spectrometry. J Proteome Res 11:1217–1227PubMedGoogle Scholar
  7. 7.
    Sun J, Von Tungeln LS, Hines W et al (2009) Identification of metabolite profiles of the catechol-O-methyl transferase inhibitor tolcapone in rat urine using LC/MS-based metabonomics analysis. J Chromatogr B Analyt Technol Biomed Life Sci 877:2557–2565PubMedGoogle Scholar
  8. 8.
    Wolfender J-L, Glauser G, Boccard J et al (2009) MS-based plant metabolomic approaches for biomarker discovery. Nat Prod Commun 4:1417–1430PubMedGoogle Scholar
  9. 9.
    Al-Talla ZA, Akrawi SH, Emwas AHM (2011) Solid state NMR and bioequivalence comparison of the pharmacokinetic parameters of two formulations of clindamycin. Int J Clin Pharm Ther 49:469–476Google Scholar
  10. 10.
    Ali K, Iqbal M, Yuliana ND et al (2013) Identification of bioactive metabolites against adenosine A1 receptor using NMR-based metabolomics. Metabolomics 9:778–785Google Scholar
  11. 11.
    Deja S, Barg E, Mlynarz P et al (2013) H-1 NMR-based metabolomics studies of urine reveal differences between type 1 diabetic patients with high and low HbAc1 values. J Pharm Biomed Anal 83:43–48PubMedGoogle Scholar
  12. 12.
    Bu Q, Yan G, Deng P et al (2010) NMR-based metabonomic study of the sub-acute toxicity of titanium dioxide nanoparticles in rats after oral administration. Nanotechnology 21:1–12Google Scholar
  13. 13.
    Slupsky CM (2010) NMR-based analysis of metabolites in urine provides rapid diagnosis and etiology of pneumonia. Biomark Med 4:195–197PubMedGoogle Scholar
  14. 14.
    Emwas A-HMS, Salek RM, Griffin JL, Merzaban J (2013) NMR-based metabolomics in human disease diagnosis: applications, limitations, and recommendations. Metabolomics 9:1048–1072Google Scholar
  15. 15.
    Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62:817–836PubMedGoogle Scholar
  16. 16.
    Bedair M, Sumner LW (2008) Current and emerging mass-spectrometry technologies for metabolomics. Trends Anal Chem 27:238–250Google Scholar
  17. 17.
    Connor SC, Wu W, Sweatman BC et al (2004) Effects of feeding and body weight loss on the 1H-NMR-based urine metabolic profiles of male Wistar Han rats: implications for biomarker discovery. Biomarkers 9:156–179PubMedGoogle Scholar
  18. 18.
    Morvan D, Demidem A, Papon J et al (2002) Melanoma tumors acquire a new phospholipid metabolism phenotype under cystemustine as revealed by high-resolution magic angle spinning proton nuclear magnetic resonance spectroscopy of intact tumor sampled. Cancer Res 62:1890–1897PubMedGoogle Scholar
  19. 19.
    Jimenez B, Mirnezami R, Kinross J et al (2013) H-1 HR-MAS NMR spectroscopy of tumor-induced local metabolic “field-effects” enables colorectal cancer staging and prognostication. J Proteome Res 12:959–968PubMedGoogle Scholar
  20. 20.
    Yang Y, Wang L, Wang S et al (2013) Study of metabonomic profiles of human esophageal carcinoma by use of high-resolution magic-angle spinning H-1 NMR spectroscopy and multivariate data analysis. Anal Bioanal Chem 405:3381–3389PubMedGoogle Scholar
  21. 21.
    DeFeo EM, Cheng LL (2010) Characterizing human cancer metabolomics with ex vivo H-1 HRMAS MRS. Technol Cancer Res Treat 9:381–391PubMedGoogle Scholar
  22. 22.
    Moestue S, Sitter B, Bathen TF et al (2011) HR MAS MR spectroscopy in metabolic characterization of cancer. Curr Top Med Chem 11:2–26PubMedGoogle Scholar
  23. 23.
    Somashekar BS, Amin AG, Rithner CD et al (2011) Metabolic profiling of lung granuloma in mycobacterium tuberculosis infected guinea pigs: ex vivo H-1 magic angle spinning NMR studies. J Proteome Res 10:4186–4195PubMedGoogle Scholar
  24. 24.
    Somashekar BS, Kamarajan P, Danciu T et al (2011) Magic angle spinning NMR-based metabolic profiling of head and neck squamous cell carcinoma tissues. J Proteome Res 10:5232–5241PubMedCentralPubMedGoogle Scholar
  25. 25.
    Bouatra S, Aziat F, Mandal R et al (2013) The human urine metabolome. PLoS One 8:e73076PubMedCentralPubMedGoogle Scholar
  26. 26.
    Eddy MT, Belenky M, Sivertsen AC et al (2013) Selectively dispersed isotope labeling for protein structure determination by magic angle spinning NMR. J Biomol NMR 57:129–139PubMedCentralPubMedGoogle Scholar
  27. 27.
    Koito Y, Yamada K, Ando S (2013) Solid-state NMR and wide-angle X-ray diffraction study of hydrofluoroether/beta-cyclodextrin inclusion complex. J Inclusion Phenom Macrocyclic Chem 76:143–150Google Scholar
  28. 28.
    Bouhrara M, Ranga C, Fihri A et al (2013) Nitridated fibrous silica (KCC-1) as a sustainable solid base nanocatalyst. ACS Sustainable Chem Eng 1:1192–1199Google Scholar
  29. 29.
    Jackson MD, Moon J, Gotti E et al (2013) Material and elastic properties of Al-tobermorite in ancient roman seawater concrete. J Am Ceram Soc 96:2598–2606Google Scholar
  30. 30.
    Pettinari C, Caruso F, Zaffaroni N et al (2006) Synthesis, spectroscopy (IR, multinuclear NMR, ESI-MS), diffraction, density functional study and in vitro antiproliferative activity of pyrazole-beta-diketone dihalotin(IV) compounds on 5 melanoma cell lines. J Inorg Biochem 100:58–69PubMedGoogle Scholar
  31. 31.
    Khan MT, Busch M, Molina VG et al (2014) How different is the composition of the fouling layer of wastewater reuse and seawater desalination RO membranes? Water Res 59:271–282PubMedGoogle Scholar
  32. 32.
    Hirano T, Nonoyama S, Miyajima T et al (1986) Gas-phase F-19 and H-1 high-resolution NMR-spectroscopy – application to the study of unperturbed conformational energies of 1,2-difluoroethane. J Chem Soc Chem Commun 8:606–607Google Scholar
  33. 33.
    Marchione AA, Fagan PJ, Till EJ et al (2008) Estimation of atmospheric lifetimes of hydrofluorocarbons, hydrofluoroethers, and olefins by chlorine photolysis using gas-phase NMR spectroscopy. Anal Chem 80:6317–6322PubMedGoogle Scholar
  34. 34.
    Krusic PJ, Shtarov AB, Roe DC et al (2010) Chemical kinetics studied by gas-phase NMR spectroscopy the encyclopedia of magnetic resonance. Wiley, Hoboken, NJ, pp 233–250Google Scholar
  35. 35.
    Jackowski K (2006) Multinuclear NMR spectroscopy in the gas phase. J Mol Struct 786:215–219Google Scholar
  36. 36.
    Jackowski K (2001) Gas-phase O-17 and S-33 NMR spectroscopy. J Mol Struct 563:159–162Google Scholar
  37. 37.
    Widdifield CM, Bryce DL (2009) Crystallographic structure refinement with quadrupolar nuclei: a combined solid-state NMR and GIPAW DFT example using MgBr2. Phys Chem Chem Phys 11:7120–7122PubMedGoogle Scholar
  38. 38.
    Vyalikh A, Massiot D, Scheler U (2009) Structural characterisation of aluminium layered double hydroxides by Al-27 solid-state NMR. Solid State Nucl Magn Reson 36:19–23PubMedGoogle Scholar
  39. 39.
    Wiench JW, Avadhut YS, Maity N et al (2007) Characterization of covalent linkages in organically functionalized MCM-41 mesoporous materials by solid-state NMR and theoretical calculations. J Phys Chem B 111:3877–3885PubMedGoogle Scholar
  40. 40.
    Ashbrook SE, Le Polles L, Pickard CJ et al (2007) First-principles calculations of solid-state O-17 and Si-29 NMR spectra of Mg2SiO4 polymorphs. Phys Chem Chem Phys 9:1587–1598PubMedGoogle Scholar
  41. 41.
    Shidong C, Maltsev S, Emwas AH et al (2010) Solid-state NMR paramagnetic relaxation enhancement immersion depth studies in phospholipid bilayers. J Magn Reson 207:89–94Google Scholar
  42. 42.
    Patil U, Fihri A, Emwas A-H et al (2012) Silicon oxynitrides of KCC-1, SBA-15 and MCM-41 for CO2 capture with excellent stability and regenerability. Chem Sci 3:2224–2229Google Scholar
  43. 43.
    Wong A, Li X, Sakellariou D (2013) Refined magic-angle coil spinning resonator for nanoliter NMR spectroscopy: enhanced spectral resolution. Anal Chem 85:2021–2026PubMedGoogle Scholar
  44. 44.
    Tripathi P, Somashekar BS, Ponnusamy M et al (2013) HR-MAS NMR tissue metabolomic signatures cross-validated by mass spectrometry distinguish bladder cancer from benign disease. J Proteome Res 12:3519–3528PubMedCentralPubMedGoogle Scholar
  45. 45.
    Elbayed K, Berl V, Debeuckelaere C et al (2013) HR-MAS NMR spectroscopy of reconstructed human epidermis: potential for the in situ investigation of the chemical interactions between skin allergens and nucleophilic amino acids. Chem Res Toxicol 26:136–145PubMedGoogle Scholar
  46. 46.
    Wilson M, Davies NP, Brundler M-A et al (2009) High resolution magic angle spinning 1H NMR of childhood brain and nervous system tumours. Mol Cancer 8:1–11Google Scholar
  47. 47.
    X-x G, W-y H, H-w Y et al (2008) Study of malignant and normal tissues of the rectum using NMR spectroscopy. Guang Pu Xue Yu Guang Pu Fen Xi 28:2201–2206Google Scholar
  48. 48.
    De Silva SS, Payne GS, Thomas V et al (2009) Investigation of metabolite changes in the transition from pre-invasive to invasive cervical cancer measured using (1)H and (31)P magic angle spinning MRS of intact tissue. NMR Biomed 22:191–198PubMedGoogle Scholar
  49. 49.
    Duarte IF, Stanley EG, Holmes E et al (2005) Metabolic assessment of human liver transplants from biopsy samples at the donor and recipient stages using high-resolution magic angle spinning (1)H NMR spectroscopy. Anal Chem 77:5570–5578PubMedGoogle Scholar
  50. 50.
    Atiqullah M, Anantawaraskul S, Emwas A-HM et al (2013) Effects of supported ((BuCp)-Bu-n)(2)ZrCl2 catalyst active-center distribution on ethylene-1-hexene copolymer backbone heterogeneity and thermal behaviors. Ind Eng Chem Res 52:9359–9373Google Scholar
  51. 51.
    Jackson MD, Chae SR, Mulcahy SR et al (2013) Unlocking the secrets of Al-tobermorite in Roman seawater concrete. Am Mineral 98:1669–1687Google Scholar
  52. 52.
    Kamal MS, Bahuleyan BK, Sohail OB et al (2013) Crystallization analysis fractionation of poly(ethylene-co-styrene) produced by metallocene catalysts. Polym Bull 70:2645–2656Google Scholar
  53. 53.
    Abriata LA, Zaballa M-E, Berry RE et al (2013) Electron spin density on the axial his ligand of high-spin and low-spin nitrophorin 2 probed by heteronuclear NMR spectroscopy. Inorg Chem 52:1285–1295PubMedCentralPubMedGoogle Scholar
  54. 54.
    Kazansky LP, McGarvey BR (1999) NMR and EPR spectroscopies and electron density distribution in polyoxoanions. Coord Chem Rev 188:157–210Google Scholar
  55. 55.
    Sereda GA, Borisenko AA, Lapteva VL et al (1992) Study of substituents effect on the distribution of electron density in monosubstituted and disubstituted triptycenes molecules by the H-1 and C-13 NMR-spectroscopy. Zh Org Khim 28:1105–1119Google Scholar
  56. 56.
    Tandura SN, Kolesnikov SP, Nosov KS et al (1997) Electron density distributions in substituted 2,3,4,5-tetraphenyl-1-germacyclopenta-2,4-dienes studied by NMR spectroscopy. Russ Chem Bull 46:1859–1861Google Scholar
  57. 57.
    Atiqullah M, Winston MS, Bercaw JE et al (2012) Effects of a vanadium post-metallocene catalyst-induced polymer backbone inhomogeneity on UV oxidative degradation of the resulting polyethylene film. Polym Degrad Stab 97:1164–1177Google Scholar
  58. 58.
    Bahuleyan BK, De SK, Sarath PU et al (2012) Effect of aluminium nitride on the properties of polyethylene obtained by In situ polymerization using Ni(II) diimine complex. Macromol Res 20:772–775Google Scholar
  59. 59.
    Kirchheim AP, Dal Molin DC, Fischer P et al (2011) Real-time high-resolution X-ray imaging and nuclear magnetic resonance study of the hydration of pure and Na-doped C(3)A in the presence of sulfates. Inorg Chem 50:1203–1212PubMedGoogle Scholar
  60. 60.
    Zhang B, Powers R (2012) Analysis of bacterial biofilms using NMR-based metabolomics. Future Med Chem 4:1273–1306PubMedCentralPubMedGoogle Scholar
  61. 61.
    Chaudhari SR, Mogurampelly S, Suryaprakash N (2013) Engagement of CF(3) group in N-H center dot center dot center dot F-C hydrogen bond in the solution state: NMR spectroscopy and MD simulation studies. J Phys Chem B 117:1123–1129PubMedGoogle Scholar
  62. 62.
    Wang Q-Q, Day VW, Bowman-James K (2013) Chemistry and structure of a host-guest relationship: the power of NMR and X-ray diffraction in tandem. J Am Chem Soc 135:392–399PubMedGoogle Scholar
  63. 63.
    Brown SP (2012) Applications of high-resolution H-1 solid-state NMR. Solid State Nucl Magn Reson 41:1–27PubMedGoogle Scholar
  64. 64.
    Kinnun JJ, Leftin A, Brown MF (2013) Solid-state NMR spectroscopy for the physical chemistry laboratory. J Chem Educ 90:123–128Google Scholar
  65. 65.
    Linenberger KJ, Emwas A-H, Peat I et al. (2009) Using NMR to determine the structure of a peptide: an inquiry approach for an upper level undergraduate laboratory. Abstr Pap Am Chem Soc 237Google Scholar
  66. 66.
    Mroue KH, Emwas A-HM, Power WP (2010) Solid-state Al-27 nuclear magnetic resonance investigation of three aluminum-centered dyes. Can J Chem 88:111–123Google Scholar
  67. 67.
    Oommen JM, Hussain MM, Emwas A-HM et al (2010) Nuclear magnetic resonance study of nanoscale ionic materials. Electrochem Solid-State Lett 13:K87–K88Google Scholar
  68. 68.
    Shahid SA, Bardiaux B, Franks WT et al (2012) Membrane-protein structure determination by solid-state NMR spectroscopy of microcrystals. Nat Meth 9:1212–1217Google Scholar
  69. 69.
    Zanzoni S, D'Onofrio M, Molinari H et al (2012) Recombinant proteins incorporating short non-native extensions may display increased aggregation propensity as detected by high resolution NMR spectroscopy. Biochem Biophys Res Commun 427:677–681PubMedGoogle Scholar
  70. 70.
    Blindauer CA, Emwas AH, Holy A et al (1997) Complex formation of the antiviral 9-2-(phosphonomethoxy)ethyl adenine (PMEA) and of its N1, N3, and N7 deaza derivatives with copper(II) in aqueous solution. Chem Eur J 3:1526–1536Google Scholar
  71. 71.
    Mattar SM, Emwas AH, Calhoun LA (2004) Spectroscopic studies of the intermediates in the conversion of 1,4,11,12-tetrahydro-9,10-anthraquinone to 9,10-anthraquinone by reaction with oxygen under basic conditions. J Phys Chem A 108:11545–11553Google Scholar
  72. 72.
    Sahloul N, Emwas A, Power W et al (2005) Ethyl acrylate-hydroxyethyl acrylate and hydroxyethyl acrylate-methacrylic acid: reactivity ratio estimation from cross-linked polymer using high resolution magic angle spinning spectroscopy. J Macromol Sci Pure Appl Chem A42:1369–1385Google Scholar
  73. 73.
    Subbarao YV, Ellis R, Paulsen GM et al (1977) Kinetics of pyropolyphosphate and tripolyphosphate hydrolyses in presence of corn and soybean roots as determined by NMR-spectroscopy. Soil Sci Soc Am J 41:316–318Google Scholar
  74. 74.
    Wilson MA, Jones AJ, Williamson B (1978) Nuclear magnetic-resonance spectroscopy of humic materials. Nature 276:487–489Google Scholar
  75. 75.
    Nageeb A, Al-Tawashi A, Mohammad Emwas A-H et al (2013) Comparison of artemisia annua bioactivities between traditional medicine and chemical extracts. Curr Bioact Compd 9:324–332PubMedCentralPubMedGoogle Scholar
  76. 76.
    Farshidfar F, Weljie AM, Kopciuk K et al (2012) Serum metabolomic profile as a means to distinguish stage of colorectal cancer. Genome Med 4:42PubMedCentralPubMedGoogle Scholar
  77. 77.
    Sachse D, Sletner L, Morkrid K et al (2012) Metabolic changes in urine during and after pregnancy in a large, multiethnic population-based cohort study of gestational diabetes. PloS One 7:e52399PubMedCentralPubMedGoogle Scholar
  78. 78.
    Nahon P, Amathieu R, Triba MN et al (2012) Identification of serum proton NMR metabolomic fingerprints associated with hepatocellular carcinoma in patients with alcoholic cirrhosis. Clin Cancer Res 18:6714–6722PubMedGoogle Scholar
  79. 79.
    Mehrpour M, Kyani A, Tafazzoli M et al (2013) A metabonomics investigation of multiple sclerosis by nuclear magnetic resonance. Magn Reson Chem 51:102–109PubMedGoogle Scholar
  80. 80.
    Diaz SO, Barros AS, Goodfellow BJ et al (2013) Following healthy pregnancy by nuclear magnetic resonance (NMR) metabolic profiling of human urine. J Proteome Res 12:969–979PubMedGoogle Scholar
  81. 81.
    Atzori L, Antonucci R, Barberini L et al (2010) 1H NMR-based metabolic profiling of urine from children with nephrouropathies. Front Biosci (Elite Ed) 2:725–732Google Scholar
  82. 82.
    Culeddu N, Chessa M, Porcu MC et al (2012) NMR-based metabolomic study of type 1 diabetes. Metabolomics 8:1162–1169Google Scholar
  83. 83.
    Ala-Korpela M (2007) Potential role of body fluid H-1 NMR metabonomics as a prognostic and diagnostic tool. Expert Rev Mol Diagn 7:761–773PubMedGoogle Scholar
  84. 84.
    O’Connell TM (2012) Recent advances in metabolomics in oncology. Bioanalysis 4:431–451PubMedGoogle Scholar
  85. 85.
    Zhang J, Wei S, Liu L et al (2012) NMR-based metabolomics study of canine bladder cancer. Biochim Biophys Acta 1822:1807–1814PubMedGoogle Scholar
  86. 86.
    Nevedomskaya E, Pacchiarotta T, Artemov A et al (2012) H-1 NMR-based metabolic profiling of urinary tract infection: combining multiple statistical models and clinical data. Metabolomics 8:1227–1235PubMedCentralPubMedGoogle Scholar
  87. 87.
    Dong B, Jia J, Hu W et al (2013) Application of H-1 NMR metabonomics in predicting renal function recoverability after the relief of obstructive uropathy in adult patients. Clin Biochem 46:346–353PubMedGoogle Scholar
  88. 88.
    Gruetter R, Weisdorf SA, Rajanayagan V et al (1998) Resolution improvements in in vivo H-1 NMR spectra with increased magnetic field strength. J Magn Reson 135:260–264PubMedGoogle Scholar
  89. 89.
    Keun HC, Beckonert O, Griffin JL et al (2002) Cryogenic probe 13C NMR spectroscopy of urine for metabonomic studies. Anal Chem 74:4588–4593PubMedGoogle Scholar
  90. 90.
    Grimes JH, O’Connell TM (2011) The application of micro-coil NMR probe technology to metabolomics of urine and serum. J Biomol NMR 49:297–305PubMedGoogle Scholar
  91. 91.
    Ardenkjær-Larsen JH, Fridlund B, Gram A et al (2003) Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc Natl Acad Sci 100:10158–10163PubMedCentralPubMedGoogle Scholar
  92. 92.
    Day SE, Kettunen MI, Gallagher FA et al (2007) Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat Med 13:1382–1387PubMedGoogle Scholar
  93. 93.
    Emwas AH, Saunders M, Ludwig C et al (2008) Determinants for optimal enhancement in ex situ DNP experiments. Appl Magn Reson 34:483–494Google Scholar
  94. 94.
    Chekmenev EY, Norton VA, Weitekamp DP et al (2009) Hyperpolarized 1H NMR employing low γ nucleus for spin polarization storage. J Am Chem Soc 131:3164–3165PubMedCentralPubMedGoogle Scholar
  95. 95.
    Ludwig C, Marin-Montesinos I, Saunders MG et al (2010) Application of ex situ dynamic nuclear polarization in studying small molecules. Phys Chem Chem Phys 12:5868–5871PubMedGoogle Scholar
  96. 96.
    Garrod S, Humpfer E, Spraul M et al (1999) High‐resolution magic angle spinning 1H NMR spectroscopic studies on intact rat renal cortex and medulla. Magn Reson Med 41:1108–1118PubMedGoogle Scholar
  97. 97.
    Holmes E, Tsang TM, Tabrizi SJ (2006) The application of NMR-based metabonomics in neurological disorders. Neurorx 3:358–372PubMedCentralPubMedGoogle Scholar
  98. 98.
    Ratai EM, Pilkenton S, Lentz MR et al (2005) Comparisons of brain metabolites observed by HRMAS 1H NMR of intact tissue and solution 1H NMR of tissue extracts in SIV‐infected macaques. NMR Biomed 18:242–251PubMedGoogle Scholar
  99. 99.
    Griffin J, Walker L, Garrod S et al (2000) NMR spectroscopy based metabonomic studies on the comparative biochemistry of the kidney and urine of the bank vole (Clethrionomys glareolus), wood mouse (Apodemus sylvaticus), white toothed shrew (Crocidura suaveolens) and the laboratory rat. Comp Biochem Physiol B Biochem Mol Biol 127:357–367PubMedGoogle Scholar
  100. 100.
    Yang J, Xu G, Zheng Y et al (2004) Diagnosis of liver cancer using HPLC-based metabonomics avoiding false-positive result from hepatitis and hepatocirrhosis diseases. J Chromatogr B 813:59–65Google Scholar
  101. 101.
    Griffin JL, Troke J, Walker LA et al (2000) The biochemical profile of rat testicular tissue as measured by magic angle spinning H-1 NMR spectroscopy. FEBS Lett 486:225–229PubMedGoogle Scholar
  102. 102.
    Monleon D, Morales JM, Gonzalez-Darder J et al (2008) Benign and atypical meningioma metabolic signatures by high-resolution magic-angle spinning molecular profiling. J Proteome Res 7:2882–2888PubMedGoogle Scholar
  103. 103.
    Wang H, Wang L, Zhang H et al (2013) H-1 NMR-based metabolic profiling of human rectal cancer tissue. Mol Cancer 12:121PubMedCentralPubMedGoogle Scholar
  104. 104.
    Kaplan O, van Zijl P, Cohen JS (1990) Information from combined 1H and 31P NMR studies of cell extracts: differences in metabolism between drug-sensitive and drug-resistant MCF-7 human breast cancer cells. Biochem Biophys Res Commun 169:383–390PubMedGoogle Scholar
  105. 105.
    Ruiz‐Cabello J, Cohen JS (1992) Phospholipid metabolites as indicators of cancer cell function. NMR Biomed 5:226–233PubMedGoogle Scholar
  106. 106.
    Emwas AHM, Al-Talla ZA, Guo XR et al (2013) Utilizing NMR and EPR spectroscopy to probe the role of copper in prion diseases. Magn Reson Chem 51:255–268PubMedGoogle Scholar
  107. 107.
    Kamal MZ, Yedavalli P, Deshmukh MV et al (2013) Lipase in aqueous-polar organic solvents: activity, structure, and stability. Protein Sci 22:904–915PubMedCentralPubMedGoogle Scholar
  108. 108.
    Samal RP, Khedkar VM, Pissurlenkar RRS et al (2013) Design, synthesis, structural characterization by IR, 1H, 13C, 15N, 2D-NMR, X-ray diffraction and evaluation of a new class of phenylaminoacetic acid benzylidene hydrazines as pfENR inhibitors. Chem Biol Drug Des 81:715–729PubMedGoogle Scholar
  109. 109.
    Cho BP, Kadlubar FF, Culp SJ et al (1990) N-15 nuclear-magnetic-resonance studies on the tautomerism of 8-hydroxy-2′-deoxyguanosine, 8-hydroxyguanosine, and other C8-substituted guanine nucleosides. Chem Res Toxicol 3:445–452PubMedGoogle Scholar
  110. 110.
    Gronenborn AM, Wingfield PT, Clore GM (1989) Determination of the secondary structure of the DNA-binding protein Ner from phage Mu using H-1 homonuclear and N-15-H-1 heteronuclear NMR-spectroscopy. Biochemistry 28:5081–5089PubMedGoogle Scholar
  111. 111.
    Liu S, Howell M, Melby J et al (2012) H-1, C-13 and N-15 resonance assignment of the anticodon binding domain of human lysyl aminoacyl tRNA synthetase. Biomol NMR Assign 6:173–176PubMedGoogle Scholar
  112. 112.
    Martino L, Conte MR (2012) Biosynthetic preparation of 13C/15N-labeled rNTPs for high-resolution NMR studies of RNAs. Methods Mol Biol 941:227–245PubMedGoogle Scholar
  113. 113.
    Xi Y, de Ropp JS, Viant MR et al (2006) Automated screening for metabolites in complex mixtures using 2D COSY NMR spectroscopy. Metabolomics 2:221–233Google Scholar
  114. 114.
    Sandusky P, Raftery D (2005) Use of selective TOCSY NMR experiments for quantifying minor components in complex mixtures: application to the metabonomics of amino acids in honey. Anal Chem 77:2455–2463PubMedGoogle Scholar
  115. 115.
    Beckonert O, Keun HC, Ebbels TMD et al (2007) Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2:2692–2703PubMedGoogle Scholar
  116. 116.
    Nicholson JK, Foxall PJD, Spraul M et al (1995) 750 MHz 1H and 1H-13C NMR spectroscopy of human blood plasma. Anal Chem 67:793–811PubMedGoogle Scholar
  117. 117.
    Yuk J, McKelvie JR, Simpson MJ et al (2010) Comparison of 1-D and 2-D NMR techniques for screening earthworm responses to sub-lethal endosulfan exposure. Environ Chem 7:524–536Google Scholar
  118. 118.
    Ludwig C, Ward DG, Martin A et al (2009) Fast targeted multidimensional NMR metabolomics of colorectal cancer. Magn Reson Chem 47:S68–S73PubMedGoogle Scholar
  119. 119.
    Xia J, Bjorndahl TC, Tang P et al (2008) MetaboMiner – semi-automated identification of metabolites from 2D NMR spectra of complex biofluids. BMC Bioinformatics 9Google Scholar
  120. 120.
    Fonville JM, Maher AD, Coen M et al (2010) Evaluation of full-resolution J-resolved 1H NMR projections of biofluids for metabonomics information retrieval and biomarker identification. Anal Chem 82:1811–1821PubMedGoogle Scholar
  121. 121.
    Mannina L, Sobolev A, Capitani D et al (2008) NMR metabolic profiling of organic and aqueous sea bass extracts: implications in the discrimination of wild and cultured sea bass. Talanta 77:433–444PubMedGoogle Scholar
  122. 122.
    Griffin JL, Williams HJ, Sang E et al (2001) Abnormal lipid profile of dystrophic cardiac tissue as demonstrated by one- and two-dimensional magic-angle spinning H-1 NMR spectroscopy. Magn Reson Med 46:249–255PubMedGoogle Scholar
  123. 123.
    Hyberts SG, Heffron GJ, Tarragona NG et al (2007) Ultrahigh-resolution 1H-13C HSQC spectra of metabolite mixtures using nonlinear sampling and forward maximum entropy reconstruction. J Am Chem Soc 129:5108–5116PubMedCentralPubMedGoogle Scholar
  124. 124.
    Tang H, Wang Y, Nicholson JK et al (2004) Use of relaxation-edited one-dimensional and two dimensional nuclear magnetic resonance spectroscopy to improve detection of small metabolites in blood plasma. Anal Biochem 325:260–272PubMedGoogle Scholar
  125. 125.
    Dumas ME, Canlet C, Vercauteren J et al (2005) Homeostatic signature of anabolic steroids in cattle using 1H-13C HMBC NMR metabonomics. J Proteome Res 4:1493–1502PubMedGoogle Scholar
  126. 126.
    Dumas ME, Canlet C, André F et al (2002) Metabonomic assessment of physiological disruptions using 1H-13C HMBC-NMR spectroscopy combined with pattern recognition procedures performed on filtered variables. Anal Chem 74:2261–2273PubMedGoogle Scholar
  127. 127.
    Kono H (2013) (1)H and (13)C chemical shift assignment of the monomers that comprise carboxymethyl cellulose. Carbohydr Polym 97:384–390PubMedGoogle Scholar
  128. 128.
    Hunt CT, Boulanger Y, Fesik SW et al (1984) NMR analysis of the structure and metal sequestering properties of metallothioneins. Environ Health Perspect 54:135–145PubMedCentralPubMedGoogle Scholar
  129. 129.
    Lown JW, Hanstock CC (1985) High-field H-1-NMR analysis of the 1-1 intercalation complex of the antitumor agent mitoxantrone and the DNA duplex D(Cpgpcpg) 2. J Biomol Struct Dyn 2:1097–1106PubMedGoogle Scholar
  130. 130.
    Macura S, Kumar NG, Brown LR (1983) Combined use of cosy and double quantum two-dimensional NMR-spectroscopy for elucidation of spin systems in polymyxin-B. Biochem Biophys Res Commun 117:486–492PubMedGoogle Scholar
  131. 131.
    Kim HK, Choi YH, Verpoorte R (2010) NMR-based metabolomic analysis of plants. Nat Protoc 5:536–549PubMedGoogle Scholar
  132. 132.
    Le Guennec A, Tea I, Antheaume I et al (2012) Fast determination of absolute metabolite concentrations by spatially encoded 2D NMR: application to breast cancer cell extracts. Anal Chem 84:10831–10837PubMedGoogle Scholar
  133. 133.
    Sekiyama Y, Chikayama E, Kikuchi J (2011) Evaluation of a semipolar solvent system as a step toward heteronuclear multidimensional NMR-based metabolomics for C-13-labelled bacteria, plants, and animals. Anal Chem 83:719–726PubMedGoogle Scholar
  134. 134.
    Flores-Sanchez IJ, Choi YH, Verpoorte R (2012) Metabolite analysis of Cannabis sativa L. by NMR spectroscopy. In: Kaufmann M, Klinger C (eds) Functional genomics: methods and protocols, vol 815, 2nd edn, Methods Mol Biol., pp 363–375Google Scholar
  135. 135.
    Blasco H, Corcia P, Moreau C et al (2010) 1H-NMR-based metabolomic profiling of CSF in early amyotrophic lateral sclerosis. PLoS One 5:e13223PubMedCentralPubMedGoogle Scholar
  136. 136.
    Yi Q, Scalley-Kim ML, Alm EJ et al (2000) NMR characterization of residual structure in the denatured state of protein L. J Mol Biol 299:1341–1351PubMedGoogle Scholar
  137. 137.
    Lee S-H, Cha E-J, Lim J-E et al (2012) Structural characterization of an intrinsically unfolded mini-HBX protein from hepatitis B virus. Mol Cells 34:165–169PubMedCentralPubMedGoogle Scholar
  138. 138.
    Robertson IM, Boyko RF, Sykes BD (2011) Visualizing the principal component of H-1, N-15-HSQC NMR spectral changes that reflect protein structural or functional properties: application to troponin C. J Biomol NMR 51:115–122PubMedGoogle Scholar
  139. 139.
    Liu H-K, Parkinson JA, Bella J et al (2010) Penetrative DNA intercalation and G-base selectivity of an organometallic tetrahydroanthracene Ru-II anticancer complex. Chem Sci 1:258–270Google Scholar
  140. 140.
    Xi Y, de Ropp JS, Viant MR et al (2008) Improved identification of metabolites in complex mixtures using HSQC NMR spectroscopy. Anal Chim Acta 614:127–133PubMedCentralPubMedGoogle Scholar
  141. 141.
    Raji M, Amad M, Emwas AH (2013) Dehydrodimerization of pterostilbene during electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 27:1260–1266PubMedGoogle Scholar
  142. 142.
    Burton L, Ivosev G, Tate S et al (2008) Instrumental and experimental effects in LC-MS-based metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 871:227–235PubMedGoogle Scholar
  143. 143.
    Chen Y, Zhang R, Song Y et al (2009) RRLC-MS/MS-based metabonomics combined with in-depth analysis of metabolic correlation network: finding potential biomarkers for breast cancer. Analyst 134:2003–2011PubMedGoogle Scholar
  144. 144.
    Michopoulos F, Lai L, Gika H et al (2009) UPLC-MS-based analysis of human plasma for metabonomics using solvent precipitation or solid phase extraction. J Proteome Res 8:2114–2121PubMedGoogle Scholar
  145. 145.
    Theodoridis G, Gika HG, Wilson ID (2008) LC-MS-based methodology for global metabolite profiling in metabonomics/metabolomics. Trends Anal Chem 27:251–260Google Scholar
  146. 146.
    Waybright TJ, Van QN, Muschik GM et al (2006) LC-MS in metabonomics: optimization of experimental conditions for the analysis of metabolites in human urine. J Liq Chromatogr Relat Technol 29:2475–2497Google Scholar
  147. 147.
    Allix M, Alba MD, Florian P et al (2011) Structural elucidation of beta-(Y, Sc)(2)Si2O7: combined use of Y-89 MAS NMR and powder diffraction. J Appl Crystallogr 44:846–852Google Scholar
  148. 148.
    Singhal A (2009) Structural aspects of zeolites and oxide glasses: insights from solid state nuclear magnetic resonance. Mater Sci Found 49–51:149–192Google Scholar
  149. 149.
    Das SK, Xu S, Emwas A-H et al (2012) High energy lithium-oxygen batteries – transport barriers and thermodynamics. Energy Environ Sci 5:8927–8931Google Scholar
  150. 150.
    Loquet A, Habenstein B, Lange A (2013) Structural investigations of molecular machines by solid-state NMR. Acc Chem Res 46:2070–2079PubMedGoogle Scholar
  151. 151.
    Rouge P, Cornu A, Biesse-Martin A-S et al (2013) Identification of quinoline, carboline and glycinamide compounds in cow milk using HRMS and NMR. Food Chem 141:1888–1894PubMedGoogle Scholar
  152. 152.
    Weingarth M, Baldus M (2013) Solid-state NMR-based approaches for supramolecular structure elucidation. Acc Chem Res 46:2037–2046PubMedGoogle Scholar
  153. 153.
    Barbul I, Varga RA, Silvestru C (2013) Structural diversity of coordination cores in homoleptic tetraaryltin(IV) dioxolane, aldehyde and imines: the first octacoordinated double helicate tetraorganotin(IV) compound. Eur J Inorg Chem 18:3146–3154Google Scholar
  154. 154.
    Ghazzali M, El-Faham A, Abdel-Megeed A et al (2012) Microwave-assisted synthesis, structural elucidation and biological assessment of 2-(2-acetamidophenyl)-2-oxo-N phenyl acetamide and N-(2-(2-oxo-2(phenylamino)acetyl)phenyl)propionamide derivatives. J Mol Struct 1013:163–167Google Scholar
  155. 155.
    Niemyjska M, Maciejewska D, Wolska I et al (2012) Synthesis, structural investigations, and anti-cancer activity of new methyl indole-3-carboxylate derivatives. J Mol Struct 1026:30–35Google Scholar
  156. 156.
    Uma Devi T, Priya S, Selvanayagam S et al (2012) Synthesis, structural elucidation and spectroscopic analysis of 3a,8b-dihydroxy-4-oxo-1H,2H,3H,3aH,4H,8bH-indeno 1,2-d imidazolidin-2-iminium chloride. Spectrochim Acta A Mol Biomol Spectrosc 97:1063–1071PubMedGoogle Scholar
  157. 157.
    Abuhijleh AL, Abu Ali H, Emwas A-H (2009) Synthesis, spectral and structural characterization of dinuclear rhodium (II) complexes of the anticonvulsant drug valproate with theophylline and caffeine. J Organomet Chem 694:3590–3596Google Scholar
  158. 158.
    Tegoni M, Ferretti L, Sansone F et al (2007) Synthesis, solution thermodynamics, and X-ray study of Cu-II 12 metallacrown-4 with GABA hydroxamic acid: an unprecedented crystal structure of a 12 MC-4 with a gamma-aminohydroxamate. Chemistry 13:1300–1308PubMedGoogle Scholar
  159. 159.
    Al-Masri HT, Emwas A-HM, Al-Talla ZA et al (2012) Synthesis and characterization of new N-(diphenylphosphino)-naphthylamine chalcogenides: X-ray structures of (1-Nhc10h7)P(Se)Ph-2 And Ph2p(S)Op(S)Ph-2. Phosphorus Sulfur Silicon Relat Elem 187:1082–1090Google Scholar
  160. 160.
    Decken A, Mattar SM, Emwas A (2005) 1,4,11,12-Tetrahydro-9,10-anthraquinone. Acta Crystallogr Sect E Struct Rep Online 61:O641–O642Google Scholar
  161. 161.
    Reepmeyer JC, Woodruff JT, d’Avignon DA (2007) Structure elucidation of a novel analogue of sildenafil detected as an adulterant in an herbal dietary supplement. J Pharm Biomed Anal 43:1615–1621PubMedGoogle Scholar
  162. 162.
    Riddell N, Arsenault G, Klein J et al (2009) Structural characterization and thermal stabilities of the isomers of the brominated flame retardant 1,2,5,6-tetrabromocyclooctane (TBCO). Chemosphere 74:1538–1543PubMedGoogle Scholar
  163. 163.
    Wu C, Chen F, Wang X et al (2007) Identification of antioxidant phenolic. compounds in feverfew (Tanacetum parthenium) by HPLC-ESI-MS/MS and NMR. Phytochem Anal 18:401–410PubMedGoogle Scholar
  164. 164.
    Zhou A, Kikandi S, Sadik OA (2007) Electrochemical degradation of quercetin: isolation and structural elucidation of the degradation products. Electrochem Commun 9:2246–2255Google Scholar
  165. 165.
    Bretz M, Gockler S, Humpf HU (2005) Isolation and structural elucidation of thermal degradation products of the Fusarium mycotoxin nivalenol. Mycotoxin Res 21:15–17PubMedGoogle Scholar
  166. 166.
    Wolff JC, Hawtin PN, Monte S et al (2001) The use of particle beam mass spectrometry for the measurement of impurities in a nabumetone drug substance, not easily amenable to atmospheric pressure ionisation techniques. Rapid Commun Mass Spectrom 15:265–272PubMedGoogle Scholar
  167. 167.
    Scalbert A, Brennan L, Fiehn O et al (2009) Mass-spectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics 5:435–458PubMedCentralPubMedGoogle Scholar
  168. 168.
    Iijima Y, Nakamura Y, Ogata Y et al (2008) Metabolite annotations based on the integration of mass spectral information. Plant J 54:949–962PubMedCentralPubMedGoogle Scholar
  169. 169.
    Lawton KA, Berger A, Mitchell M et al (2008) Analysis of the adult human plasma metabolome. Pharmacogenomics 9:383–397PubMedGoogle Scholar
  170. 170.
    A J, Trygg J, Gullberg J et al (2005) Extraction and GC/MS analysis of the human blood plasma metabolome. Anal Chem 77:8086–8094PubMedGoogle Scholar
  171. 171.
    Shaham O, Wei R, Wang TJ et al (2008) Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity. Mol Syst Biol 4:214PubMedCentralPubMedGoogle Scholar
  172. 172.
    Theodoridis GA, Gika HG, Want EJ et al (2012) Liquid chromatography-mass spectrometry based global metabolite profiling: a review. Anal Chim Acta 711:7–16PubMedGoogle Scholar
  173. 173.
    Masson P, Alves AC, Ebbels TMD et al (2010) Optimization and evaluation of metabolite extraction protocols for untargeted metabolic profiling of liver samples by UPLC-MS. Anal Chem 82:7779–7786PubMedGoogle Scholar
  174. 174.
    Gika HG, Theodoridis GA, Wilson ID (2008) Hydrophilic interaction and reversed-phase ultra-performance liquid chromatography TOF-MS for metabonomic analysis of Zucker rat urine. J Sep Sci 31:1598–1608PubMedGoogle Scholar
  175. 175.
    Spagou K, Tsoukali H, Raikos N et al (2010) Hydrophilic interaction chromatography coupled to MS for metabonomic/metabolomic studies. J Sep Sci 33:716–727PubMedGoogle Scholar
  176. 176.
    Spagou K, Wilson ID, Masson P et al (2011) HILIC-UPLC-MS for exploratory urinary metabolic profiling in toxicological studies. Anal Chem 83:382–390PubMedGoogle Scholar
  177. 177.
    Wang Y, Lehmann R, Lu X et al (2008) Novel, fully automatic hydrophilic interaction/reversed-phase column-switching high-performance liquid chromatographic system for the complementary analysis of polar and apolar compounds in complex samples. J Chromatogr A 1204:28–34PubMedGoogle Scholar
  178. 178.
    Sana TR, Waddell K, Fischer SM (2008) A sample extraction and chromatographic strategy for increasing LC/MS detection coverage of the erythrocyte metabolome. J Chromatogr B Analyt Technol Biomed Life Sci 871:314–321PubMedGoogle Scholar
  179. 179.
    Lu W, Bennett BD, Rabinowitz JD (2008) Analytical strategies for LC-MS-based targeted metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 871:236–242PubMedCentralPubMedGoogle Scholar
  180. 180.
    Yao W, He M, Jiang Y et al (2013) Integrated LC/MS and GC/MS metabolomics data for the evaluation of protection function of fructus ligustri lucidi on mouse liver. Chromatographia 76:1171–1179Google Scholar
  181. 181.
    Lee D-K, Yoon MH, Kang YP et al (2013) Comparison of primary and secondary metabolites for suitability to discriminate the origins of Schisandra chinensis by GC/MS and LC/MS. Food Chem 141:3931–3937PubMedGoogle Scholar
  182. 182.
    Guo B, Chen B, Liu A et al (2012) Liquid chromatography-mass spectrometric multiple reaction monitoring-based strategies for expanding targeted profiling towards quantitative metabolomics. Curr Drug Metab 13:1226–1243PubMedGoogle Scholar
  183. 183.
    Chen J, Zhou L, Zhang X et al (2012) Urinary hydrophilic and hydrophobic metabolic profiling based on liquid chromatography-mass spectrometry methods: differential metabolite discovery specific to ovarian cancer. Electrophoresis 33:3361–3369PubMedGoogle Scholar
  184. 184.
    Yuan W, Zhang J, Li S et al (2011) Amine metabolomics of hyperglycemic endothelial cells using capillary LC-MS with isobaric tagging. J Proteome Res 10:5242–5250PubMedGoogle Scholar
  185. 185.
    Wei R, Li G, Seymour AB (2010) High-throughput and multiplexed LC/MS/MRM method for targeted metabolomics. Anal Chem 82:5527–5533PubMedGoogle Scholar
  186. 186.
    Grison S, Martin JC, Dublineau I et al (2010) Metabolomics, a new approach to identify biomarkers of 137Cs health effects. Toxicol Lett 196:S54Google Scholar
  187. 187.
    Ciborowski M, Javier Ruperez F, Paz Martinez-Alcazar M et al (2010) Metabolomic approach with LC-MS reveals significant effect of pressure on diver’s plasma. J Proteome Res 9:4131–4137PubMedGoogle Scholar
  188. 188.
    An Z, Chen Y, Zhang R et al (2010) Integrated ionization approach for RRLC-MS/MS-based metabonomics: finding potential biomarkers for lung cancer. J Proteome Res 9:4071–4081PubMedGoogle Scholar
  189. 189.
    Brown SD, Rhodes DJ, Pritchard BJ (2007) A validated SPME-GC-MS method for simultaneous quantification of club drugs in human urine. Forensic Sci Int 171:142–150PubMedGoogle Scholar
  190. 190.
    Hori D, Hasegawa Y, Kimura M et al (2005) Clinical onset and prognosis of Asian children with organic acidemias, as detected by analysis of urinary organic acids using GC/MS, instead of mass screening. Brain Dev 27:39–45PubMedGoogle Scholar
  191. 191.
    Meyer MR, Peters FT, Maurer HH (2010) Automated mass spectral deconvolution and identification system for GC-MS screening for drugs, poisons, and metabolites in urine. Clin Chem 56:575–584PubMedGoogle Scholar
  192. 192.
    Yoon H-R (2007) Two step derivatization for the analyses of organic, amino acids and glycines on filter paper plasma by GC-MS/SIM. Arch Pharmacal Res 30:387–395Google Scholar
  193. 193.
    Kanani H, Chrysanthopoulos PK, Klapa MI (2008) Standardizing GC-MS metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 871:191–201PubMedGoogle Scholar
  194. 194.
    Babushok VI, Linstrom PJ, Reed JJ et al (2007) Development of a database of gas chromatographic retention properties of organic compounds. J Chromatogr A 1157:414–421PubMedGoogle Scholar
  195. 195.
    Kind T, Wohlgemuth G, Lee DY et al (2009) FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem 81:10038–10048PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Imaging and Characterization Core LabKing Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia
  2. 2.NMR Core LabKing Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia

Personalised recommendations