Eukaryotic Glycosylation: Online Methods for Site Prediction on Protein Sequences

  • Hiren J. Joshi
  • Ramneek GuptaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1273)


This chapter runs through several online predictors enabling prediction of glycosylation sites on protein sequences. Most online methods provide in place documentation and examples, but this chapter provides a general overview and workflow for each method.

Key words

Glycosylation Online Site prediction Machine learning Fuzzy motifs 


  1. 1.
    Steentoft C, Vakhrushev SY, Joshi HJ et al (2013) Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J 32(10):1478–1488CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Li S, Liu B, Zeng R et al (2006) Predicting O-glycosylation sites in mammalian proteins by using SVMs. Comput Biol Chem 30:203–208CrossRefPubMedGoogle Scholar
  3. 3.
    Chen Y-Z, Tang Y-R, Sheng Z-Y et al (2008) Prediction of mucin-type O-glycosylation sites in mammalian proteins using the composition of k-spaced amino acid pairs. BMC Bioinformatics 9:101CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Gupta R, Brunak S (2002) Prediction of glycosylation across the human proteome and the correlation to protein function. Pacific Symposium on Biocomputing, pp 310–322Google Scholar
  5. 5.
    Gupta R, Jensen LJ, Brunak S (2002) Orphan protein function and its relation to glycosylation. Ernst Schering Research Foundation workshop, pp 276–294Google Scholar
  6. 6.
    Chuang G-Y, Boyington JC, Joyce MG et al (2012) Computational prediction of N-linked glycosylation incorporating structural properties and patterns. Bioinformatics 28:2249–2255CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Julenius K (2007) NetCGlyc 1.0: prediction of mammalian C-mannosylation sites. Glycobiology 17:868–876CrossRefPubMedGoogle Scholar
  8. 8.
    Hamby SE, Hirst JD (2008) Prediction of glycosylation sites using random forests. BMC Bioinformatics 9:500CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Chen S-A, Lee T-Y, Ou Y-Y (2010) Incorporating significant amino acid pairs to identify O-linked glycosylation sites on transmembrane proteins and non-transmembrane proteins. BMC Bioinformatics 11:536CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Cai Y, He J, Lu L (2011) Prediction of mucin-type O-glycosylation sites by a two-staged strategy. Mol Divers 15:427–433CrossRefPubMedGoogle Scholar
  11. 11.
    Caragea C, Sinapov J, Silvescu A et al (2007) Glycosylation site prediction using ensembles of Support Vector Machine classifiers. BMC Bioinformatics 8:438CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Breiman L (2001) Random forests. Mach Learn 45:5–32CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of DentistryUniversity of CopenhagenCopenhagen NDenmark
  2. 2.Center for Biological Sequence AnalysisTechnical University of DenmarkLyngbyDenmark

Personalised recommendations