Molecular Dynamics Simulations of Glycoproteins Using CHARMM

  • Sairam S. Mallajosyula
  • Sunhwan Jo
  • Wonpil Im
  • Alexander D. MacKerellJr.
Part of the Methods in Molecular Biology book series (MIMB, volume 1273)


Molecular dynamics simulations are an effective tool to study the structure, dynamics, and thermodynamics of carbohydrates and proteins. However, the simulations of heterogeneous glycoprotein systems have been limited due to the lack of appropriate molecular force field parameters describing the linkage between the carbohydrate and the protein regions as well as the tools to prepare these systems for modeling studies. In this work we outline the recent developments in the CHARMM carbohydrate force field to treat glycoproteins and describe in detail the step-by-step procedures involved in building glycoprotein geometries using CHARMM-GUI Glycan Reader.

Key words

N-glycosylation O-glycosylation Carbohydrates Empirical force field Molecular dynamics simulations 



This work was supported by the National Institutes of Health (NIH) grant GM070855 (to ADM) and the University of Kansas General Research Fund allocation #2301388-003 (to WI).


  1. 1.
    Varki A (2009) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  2. 2.
    Dwek RA (1996) Glycobiology: toward understanding the function of sugars. Chem Rev 96(2):683–720CrossRefPubMedGoogle Scholar
  3. 3.
    Lis H, Sharon N (1993) Protein glycosylation. Structural and functional aspects. Eur J Biochem 218(1):1–27CrossRefPubMedGoogle Scholar
  4. 4.
    Hart GW, Brew K, Grant GA, Bradshaw RA, Lennarz WJ (1979) Primary structural requirements for the enzymatic formation of the N-glycosidic bond in glycoproteins. Studies with natural and synthetic peptides. J Biol Chem 254(19):9747–9753PubMedGoogle Scholar
  5. 5.
    Bause E (1983) Structural requirements of N-glycosylation of proteins. Studies with proline peptides as conformational probes. Biochem J 209(2):331–336PubMedCentralPubMedGoogle Scholar
  6. 6.
    Strous GJ, Dekker J (1992) Mucin-type glycoproteins. Crit Rev Biochem Mol Biol 27(1–2):57–92CrossRefPubMedGoogle Scholar
  7. 7.
    Wells L, Kreppel LK, Comer FI, Wadzinski BE, Hart GW (2004) O-GlcNAc transferase is in a functional complex with protein phosphatase 1 catalytic subunits. J Biol Chem 279(37):38466–38470CrossRefPubMedGoogle Scholar
  8. 8.
    Haltiwanger RS (2002) Regulation of signal transduction pathways in development by glycosylation. Curr Opin Struct Biol 12(5):593–598CrossRefPubMedGoogle Scholar
  9. 9.
    Shao L, Luo Y, Moloney DJ, Haltiwanger R (2002) O-glycosylation of EGF repeats: identification and initial characterization of a UDP-glucose: protein O-glucosyltransferase. Glycobiology 12(11):763–770CrossRefPubMedGoogle Scholar
  10. 10.
    Strahl-Bolsinger S, Gentzsch M, Tanner W (1999) Protein O-mannosylation. Biochim Biophys Acta 1426(2):297–307CrossRefPubMedGoogle Scholar
  11. 11.
    Van den Steen P, Rudd PM, Dwek RA, Opdenakker G (1998) Concepts and principles of O-linked glycosylation. Crit Rev Biochem Mol Biol 33(3):151–208CrossRefPubMedGoogle Scholar
  12. 12.
    Crispin M, Stuart DI, Jones EY (2007) Building meaningful models of glycoproteins. Nat Struct Mol Biol 14(5):354, discussion 354–355CrossRefPubMedGoogle Scholar
  13. 13.
    Read RJ, Adams PD, Arendall WB 3rd, Brunger AT, Emsley P, Joosten RP, Kleywegt GJ, Krissinel EB, Lutteke T, Otwinowski Z, Perrakis A, Richardson JS, Sheffler WH, Smith JL, Tickle IJ, Vriend G, Zwart PH (2011) A new generation of crystallographic validation tools for the protein data bank. Structure 19(10):1395–1412CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Apweiler R, Hermjakob H, Sharon N (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1473(1):4–8CrossRefPubMedGoogle Scholar
  15. 15.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Lutteke T (2009) Analysis and validation of carbohydrate three-dimensional structures. Acta Crystallogr D65(2):156–168Google Scholar
  17. 17.
    Henrick K, Feng Z, Bluhm WF, Dimitropoulos D, Doreleijers JF, Dutta S, Flippen-Anderson JL, Ionides J, Kamada C, Krissinel E, Lawson CL, Markley JL, Nakamura H, Newman R, Shimizu Y, Swaminathan J, Velankar S, Ory J, Ulrich EL, Vranken W, Westbrook J, Yamashita R, Yang H, Young J, Yousufuddin M, Berman HM (2008) Remediation of the protein data bank archive. Nucleic Acids Res 36(suppl 1):D426–D433PubMedCentralPubMedGoogle Scholar
  18. 18.
    Lutteke T, von der Lieth CW (2004) pdb-care (PDB carbohydrate residue check): a program to support annotation of complex carbohydrate structures in PDB files. BMC Bioinform 5:69CrossRefGoogle Scholar
  19. 19.
    Nakahara T, Hashimoto R, Nakagawa H, Monde K, Miura N, Nishimura S-I (2008) Glycoconjugate Data Bank: structures-an annotated glycan structure database and N-glycan primary structure verification service. Nucleic Acids Res 36(Suppl 1):D368–D371PubMedCentralPubMedGoogle Scholar
  20. 20.
    MacKerell AD Jr (2004) Empirical force fields for biological macromolecules: overview and issues. J Comput Chem 25(13):1584–1604CrossRefPubMedGoogle Scholar
  21. 21.
    Momany FA, Willett JL (2000) Computational studies on carbohydrates: solvation studies on maltose and cyclomaltooligosaccharides (cyclodextrins) using a DFT/ab initio-derived empirical force field, AMB99C. Carbohydr Res 326(3):210–226CrossRefPubMedGoogle Scholar
  22. 22.
    Momany FA, Willett JL (2000) Computational studies on carbohydrates: in vacuo studies using a revised AMBER force field, AMB99C, designed for alpha-(1 → 4) linkages. Carbohydr Res 326(3):194–209CrossRefPubMedGoogle Scholar
  23. 23.
    Kirschner KN, Yongye AB, Tschampel SM, Gonzalez-Outeirino J, Daniels CR, Foley BL, Woods RJ (2008) GLYCAM06: a generalizable biomolecular force field. Carbohydrates. J Comput Chem 29(4):622–655CrossRefPubMedGoogle Scholar
  24. 24.
    Lins RD, Hunenberger PH (2005) A new GROMOS force field for hexopyranose-based carbohydrates. J Comput Chem 26(13):1400–1412CrossRefPubMedGoogle Scholar
  25. 25.
    Kony D, Damm W, Stoll S, Van Gunsteren WF (2002) An improved OPLS–AA force field for carbohydrates. J Comput Chem 23(15):1416–1429CrossRefPubMedGoogle Scholar
  26. 26.
    Woods RJ, Dwek RA, Edge CJ, Fraser-Reid B (1995) Molecular mechanical and molecular dynamic simulations of glycoproteins and oligosaccharides. 1. GLYCAM_93 parameter development. J Phys Chem 99(11):3832–3846CrossRefGoogle Scholar
  27. 27.
    Hansen HS, Hünenberger PH (2011) A reoptimized GROMOS force field for hexopyranose-based carbohydrates accounting for the relative free energies of ring conformers, anomers, epimers, hydroxymethyl rotamers, and glycosidic linkage conformers. J Comput Chem 32(6):998–1032CrossRefPubMedGoogle Scholar
  28. 28.
    MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616CrossRefPubMedGoogle Scholar
  29. 29.
    MacKerell AD Jr, Feig M, Brooks CL (2004) Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25(11):1400–1415CrossRefPubMedGoogle Scholar
  30. 30.
    Foloppe N, MacKerell AD Jr (2000) All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. J Comput Chem 21(2):86–104CrossRefGoogle Scholar
  31. 31.
    MacKerell AD Jr, Banavali NK (2000) All-atom empirical force field for nucleic acids: II. Application to molecular dynamics simulations of DNA and RNA in solution. J Comput Chem 21(2):105–120CrossRefGoogle Scholar
  32. 32.
    Klauda JB, Brooks BR, MacKerell AD Jr, Venable RM, Pastor RW (2005) An ab initio study on the torsional surface of alkanes and its effect on molecular simulations of alkanes and a DPPC bilayer. J Phys Chem B 109(11):5300–5311CrossRefPubMedGoogle Scholar
  33. 33.
    Feller SE, Gawrisch K, MacKerell AD Jr (2001) Polyunsaturated fatty acids in lipid bilayers: intrinsic and environmental contributions to their unique physical properties. J Am Chem Soc 124(2):318–326CrossRefGoogle Scholar
  34. 34.
    Feller SE, MacKerell AD Jr (2000) An improved empirical potential energy function for molecular simulations of phospholipids. J Phys Chem B 104(31):7510–7515CrossRefGoogle Scholar
  35. 35.
    Yin D, MacKerell AD Jr (1998) Combined ab initio/empirical approach for optimization of Lennard–Jones parameters. J Comput Chem 19(3):334–348CrossRefGoogle Scholar
  36. 36.
    Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, MacKerell AD Jr (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31(4):671–690PubMedCentralPubMedGoogle Scholar
  37. 37.
    Guvench O, Greene SN, Kamath G, Brady JW, Venable RM, Pastor RW, MacKerell AD Jr (2008) Additive empirical force field for hexopyranose monosaccharides. J Comput Chem 29(15):2543–2564CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Hatcher E, Guvench O, MacKerell AD Jr (2009) CHARMM additive all-atom force field for aldopentofuranoses, methyl-aldopentofuranosides, and fructofuranose. J Phys Chem B 113(37):12466–12476CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Hatcher E, Guvench O, MacKerell AD Jr (2009) CHARMM additive all-atom force field for acyclic polyalcohols, acyclic carbohydrates and inositol. J Chem Theory Comput 5(5):1315–1327CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Guvench O, Hatcher ER, Venable RM, Pastor RW, MacKerell AD Jr (2009) CHARMM additive all-atom force field for glycosidic linkages between hexopyranoses. J Chem Theory Comput 5(9):2353–2370CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Raman EP, Guvench O, MacKerell AD Jr (2010) CHARMM additive all-atom force field for glycosidic linkages in carbohydrates involving furanoses. J Phys Chem B 114(40):12981–12994CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Guvench O, Mallajosyula SS, Raman EP, Hatcher E, Vanommeslaeghe K, Foster TJ, Jamison FW, MacKerell AD Jr (2011) CHARMM additive all-atom force field for carbohydrate derivatives and its utility in polysaccharide and carbohydrate-protein modeling. J Chem Theory Comput 7(10):3162–3180CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Mallajosyula SS, MacKerell AD Jr (2011) Influence of solvent and intramolecular hydrogen bonding on the conformational properties of O-linked glycopeptides. J Phys Chem B 115(38):11215–11229CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Mallajosyula SS, Guvench O, Hatcher E, MacKerell AD Jr (2012) CHARMM additive all-atom force field for phosphate and sulfate linked to carbohydrates. J Chem Theory Comput 8:759. doi: 10.1021/ct200792v CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Brooks BR, Brooks CL 3rd, MacKerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30(10):1545–1614CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29(11):1859–1865CrossRefPubMedGoogle Scholar
  47. 47.
    Jo S, Song KC, Desaire H, MacKerell AD Jr, Im W (2011) Glycan reader: automated sugar identification and simulation preparation for carbohydrates and glycoproteins. J Comput Chem 32(14):3135–3141CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Halgren TA, Damm W (2001) Polarizable force fields. Curr Opin Struct Biol 11(2):236–242CrossRefPubMedGoogle Scholar
  49. 49.
    Ponder JW, Wu C, Ren P, Pande VS, Chodera JD, Schnieders MJ, Haque I, Mobley DL, Lambrecht DS, DiStasio RA Jr, Head-Gordon M, Clark GN, Johnson ME, Head-Gordon T (2010) Current status of the AMOEBA polarizable force field. J Phys Chem B 114(8):2549–2564CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Lopes P, Roux B, MacKerell A (2009) Molecular modeling and dynamics studies with explicit inclusion of electronic polarizability: theory and applications. Theor Chim Acta 124(1):11–28CrossRefGoogle Scholar
  51. 51.
    Becker OMMJ, Alexander D, Roux B, Watanabe M (eds) (2001) Computational biochemistry and biophysics. Marcel-Dekker, Inc., New York, NYGoogle Scholar
  52. 52.
    Zhu X, Lopes PEM, MacKerell AD Jr (2012) Recent developments and applications of the CHARMM force fields. WIRE Comput Mol Sci 2(1):167–185CrossRefGoogle Scholar
  53. 53.
    Aleshin AE, Hoffman C, Firsov LM, Honzatko RB (1994) Refined crystal structures of glucoamylase from Aspergillus awamori var. X100. J Mol Biol 238(4):575–591CrossRefPubMedGoogle Scholar
  54. 54.
    Word JM, Lovell SC, Richardson JS, Richardson DC (1999) Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. J Mol Biol 285(4):1735–1747CrossRefPubMedGoogle Scholar
  55. 55.
    Beglov D, Roux B (1997) An integral equation to describe the solvation of polar molecules in liquid water. J Phys Chem B 101(39):7821–7826CrossRefGoogle Scholar
  56. 56.
    Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N-log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092CrossRefGoogle Scholar
  57. 57.
    Steinbach PJ, Brooks BR (1994) New spherical-cutoff methods for long-range forces in macromolecular simulation. J Comput Chem 15(7):667–683CrossRefGoogle Scholar
  58. 58.
    Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327–341CrossRefGoogle Scholar
  59. 59.
    Nose S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81(1):511–519CrossRefGoogle Scholar
  60. 60.
    Feller SE, Zhang Y, Pastor RW, Brooks BR (1995) Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys 103(11):4613–4621CrossRefGoogle Scholar
  61. 61.
    Brünger AT (1992) X-PLOR, Version 3.1, a system for X-ray crystallography and NMR. Yale University Press, New Haven, CTGoogle Scholar
  62. 62.
    Kalé L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) NAMD2: greater scalability for parallel molecular dynamics. J Comput Phys 151(1):283–312CrossRefGoogle Scholar
  63. 63.
    Petrescu AJ, Milac AL, Petrescu SM, Dwek RA, Wormald MR (2004) Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structure, and folding. Glycobiology 14(2):103–114CrossRefPubMedGoogle Scholar
  64. 64.
    Rao VSR, Qasba PK, Balaji PV, Chandrasekaran R (1998) Conformation of carbohydrates. Harwood Academic Publishers, AmsterdamGoogle Scholar
  65. 65.
    Tachibana Y, Fletcher GL, Fujitani N, Tsuda S, Monde K, Nishimura S-I (2004) Antifreeze glycoproteins: elucidation of the structural motifs that are essential for antifreeze activity. Angew Chem Int Ed Engl 43(7):856–862CrossRefPubMedGoogle Scholar
  66. 66.
    Stanca-Kaposta EC, Gamblin DP, Cocinero EJ, Frey J, Kroemer RT, Fairbanks AJ, Davis BG, Simons JP (2008) Solvent interactions and conformational choice in a core N-glycan segment: gas phase conformation of the central, branching trimannose unit and its singly hydrated complex. J Am Chem Soc 130(32):10691–10696CrossRefPubMedGoogle Scholar
  67. 67.
    Sattelle BM, Hansen SU, Gardiner J, Almond A (2010) Free energy landscapes of iduronic acid and related monosaccharides. J Am Chem Soc 132(38):13132–13134CrossRefPubMedGoogle Scholar
  68. 68.
    Gnanakaran S, Nymeyer H, Portman J, Sanbonmatsu KY, García AE (2003) Peptide folding simulations. Curr Opin Struct Biol 13(2):168–174CrossRefPubMedGoogle Scholar
  69. 69.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38, 27–38CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Sairam S. Mallajosyula
    • 1
  • Sunhwan Jo
    • 2
  • Wonpil Im
    • 2
  • Alexander D. MacKerellJr.
    • 1
  1. 1.Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreUSA
  2. 2.Department of Molecular Biosciences and Center for Computational BiologyThe University of KansasLawrenceUSA

Personalised recommendations