Methods to Study Tumor Surveillance Using Tumor Cell Transplantation into Genetically Engineered Mice

  • Eva Bauer
  • Agnieszka Witalisz
  • Birgit Strobl
  • Dagmar Stoiber
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1267)

Abstract

When a tumor evolves, there is constant crosstalk between the transformed cells and cells of the immune system. Transplantation of well-established tumor cell lines into genetically engineered mice is a valuable tool to study the contribution of a gene of interest to tumor surveillance. These methods bear several advantages: first, such cell lines are well characterized; second, much data for reference exist; and third, the impact of the immune system can be separated from tumor cell intrinsic effects. Here, we provide protocols for tumor cell transplantations to address the role of a specific gene product in tumor surveillance. We furthermore describe several approaches to define the impact of natural killer cells and T cells, such as cell depletion and adoptive transfer experiments or use of different genetically modified mice.

Key words

Tumor immune surveillance T cells Natural killer cells B16F10 EL4 EG7 MC38 RMA-S 

Notes

Acknowledgement

Financial support for this project was provided by the St. Anna Kinderkrebsforschung, Children’s Cancer Research Institute, financing the position of EB. BS is supported by the Austrian Science Fund (FWF) projects SFB-F28 and P25642-B22.

References

  1. 1.
    Ehrlich P (1909) Ueber den jetzigen Stand der Karzinomforschung. Ned Tijdschr Geneeskd 5Google Scholar
  2. 2.
    Medawar PB (1948) Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br J Exp Pathol 29(1):58–69PubMedCentralPubMedGoogle Scholar
  3. 3.
    Klein G (1966) Tumor antigens. Annu Rev Microbiol 20:223–252PubMedCrossRefGoogle Scholar
  4. 4.
    Old LJ, Boyse EA (1964) Immunology of experimental tumors. Annu Rev Med 15:167–186PubMedCrossRefGoogle Scholar
  5. 5.
    Prehn RT, Main JM (1957) Immunity to methylcholanthrene-induced sarcomas. J Natl Cancer Inst 18(6):769–778PubMedGoogle Scholar
  6. 6.
    Burnet FM (1970) The concept of immunological surveillance. Prog Exp Tumor Res 13:1–27PubMedGoogle Scholar
  7. 7.
    Burnet FM (1971) Immunological surveillance in neoplasia. Transplant Rev 7:3–25PubMedGoogle Scholar
  8. 8.
    Thomas L (1982) On immunosurveillance in human cancer. Yale J Biol Med 55(3–4):329–333PubMedCentralPubMedGoogle Scholar
  9. 9.
    Smyth MJ, Thia KY, Street SE, Cretney E, Trapani JA, Taniguchi M, Kawano T, Pelikan SB, Crowe NY, Godfrey DI (2000) Differential tumor surveillance by natural killer (NK) and NKT cells. J Exp Med 191(4):661–668PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, Schreiber RD (2001) IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410(6832):1107–1111PubMedCrossRefGoogle Scholar
  11. 11.
    Street SE, Cretney E, Smyth MJ (2001) Perforin and interferon-gamma activities independently control tumor initiation, growth, and metastasis. Blood 97(1):192–197PubMedCrossRefGoogle Scholar
  12. 12.
    Girardi M, Oppenheim DE, Steele CR, Lewis JM, Glusac E, Filler R, Hobby P, Sutton B, Tigelaar RE, Hayday AC (2001) Regulation of cutaneous malignancy by gammadelta T cells. Science 294(5542):605–609PubMedCrossRefGoogle Scholar
  13. 13.
    Smyth MJ, Thia KY, Street SE, MacGregor D, Godfrey DI, Trapani JA (2000) Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J Exp Med 192(5):755–760PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3(11):991–998PubMedCrossRefGoogle Scholar
  15. 15.
    Chow MT, Moller A, Smyth MJ (2012) Inflammation and immune surveillance in cancer. Semin Cancer Biol 22(1):23–32. doi: 10.1016/j.semcancer.2011.12.004 PubMedCrossRefGoogle Scholar
  16. 16.
    Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331(6024):1565–1570. doi: 10.1126/science.1203486 PubMedCrossRefGoogle Scholar
  17. 17.
    Dunn GP, Old LJ, Schreiber RD (2004) The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21(2):137–148PubMedCrossRefGoogle Scholar
  18. 18.
    Kim R, Emi M, Tanabe K (2007) Cancer immunoediting from immune surveillance to immune escape. Immunology 121(1):1–14PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Hayakawa Y, Rovero S, Forni G, Smyth MJ (2003) Alpha-galactosylceramide (KRN7000) suppression of chemical- and oncogene-dependent carcinogenesis. Proc Natl Acad Sci U S A 100(16):9464–9469PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Smyth MJ, Crowe NY, Godfrey DI (2001) NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. Int Immunol 13(4):459–463PubMedCrossRefGoogle Scholar
  21. 21.
    Shinkai Y, Rathbun G, Lam KP, Oltz EM, Stewart V, Mendelsohn M, Charron J, Datta M, Young F, Stall AM et al (1992) RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68(5):855–867PubMedCrossRefGoogle Scholar
  22. 22.
    DiSanto JP, Muller W, Guy-Grand D, Fischer A, Rajewsky K (1995) Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor gamma chain. Proc Natl Acad Sci U S A 92(2):377–381PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Garcia S, DiSanto J, Stockinger B (1999) Following the development of a CD4 T cell response in vivo: from activation to memory formation. Immunity 11(2):163–171PubMedCrossRefGoogle Scholar
  24. 24.
    Pegram HJ, Haynes NM, Smyth MJ, Kershaw MH, Darcy PK (2010) Characterizing the anti-tumor function of adoptively transferred NK cells in vivo. Cancer Immunol Immunother 59(8):1235–1246. doi: 10.1007/s00262-010-0848-7 PubMedCrossRefGoogle Scholar
  25. 25.
    Hogquist KA, Jameson SC, Heath WR, Howard JL, Bevan MJ, Carbone FR (1994) T cell receptor antagonist peptides induce positive selection. Cell 76(1):17–27PubMedCrossRefGoogle Scholar
  26. 26.
    Simma O, Zebedin E, Neugebauer N, Schellack C, Pilz A, Chang-Rodriguez S, Lingnau K, Weisz E, Putz EM, Pickl WF, Felzmann T, Muller M, Decker T, Sexl V, Stoiber D (2009) Identification of an indispensable role for tyrosine kinase 2 in CTL-mediated tumor surveillance. Cancer Res 69(1):203–211. doi: 10.1158/0008-5472.CAN-08-1705 PubMedCrossRefGoogle Scholar
  27. 27.
    Ni J, Miller M, Stojanovic A, Garbi N, Cerwenka A (2012) Sustained effector function of IL-12/15/18-preactivated NK cells against established tumors. J Exp Med 209(13):2351–2365. doi: 10.1084/jem.20120944 PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Lundqvist A, Yokoyama H, Smith A, Berg M, Childs R (2009) Bortezomib treatment and regulatory T-cell depletion enhance the antitumor effects of adoptively infused NK cells. Blood 113(24):6120–6127. doi:10.1182/blood-2008-11-190421PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Basse PH, Whiteside TL, Herberman RB (2000) Use of activated natural killer cells for tumor immunotherapy in mouse and human. Methods Mol Biol 121:81–94. doi: 10.1385/1-59259-044-6:81 PubMedGoogle Scholar
  30. 30.
    Salagianni M, Lekka E, Moustaki A, Iliopoulou EG, Baxevanis CN, Papamichail M, Perez SA (2011) NK cell adoptive transfer combined with Ontak-mediated regulatory T cell elimination induces effective adaptive antitumor immune responses. J Immunol 186(6):3327–3335. doi: 10.4049/jimmunol.1000652 PubMedCrossRefGoogle Scholar
  31. 31.
    Fidler IJ (1975) Biological behavior of malignant melanoma cells correlated to their survival in vivo. Cancer Res 35(1):218–224PubMedGoogle Scholar
  32. 32.
    Ljunggren HG, Karre K (1985) Host resistance directed selectively against H-2-deficient lymphoma variants. Analysis of the mechanism. J Exp Med 162(6):1745–1759PubMedCrossRefGoogle Scholar
  33. 33.
    Karre K, Ljunggren HG, Piontek G, Kiessling R (1986) Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319(6055):675–678. doi: 10.1038/319675a0 PubMedCrossRefGoogle Scholar
  34. 34.
    Gorer PA (1950) Studies in antibody response of mice to tumour inoculation. Br J Cancer 4(4):372–379PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Moore MW, Carbone FR, Bevan MJ (1988) Introduction of soluble protein into the class I pathway of antigen processing and presentation. Cell 54(6):777–785PubMedCrossRefGoogle Scholar
  36. 36.
    Corbett TH, Griswold DP Jr, Roberts BJ, Peckham JC, Schabel FM Jr (1975) Tumor induction relationships in development of transplantable cancers of the colon in mice for chemotherapy assays, with a note on carcinogen structure. Cancer Res 35(9):2434–2439PubMedGoogle Scholar
  37. 37.
    Haynes NM, Snook MB, Trapani JA, Cerruti L, Jane SM, Smyth MJ, Darcy PK (2001) Redirecting mouse CTL against colon carcinoma: superior signaling efficacy of single-chain variable domain chimeras containing TCR-zeta vs Fc epsilon RI-gamma. J Immunol 166(1):182–187PubMedCrossRefGoogle Scholar
  38. 38.
    Lee PP, Fitzpatrick DR, Beard C, Jessup HK, Lehar S, Makar KW, Perez-Melgosa M, Sweetser MT, Schlissel MS, Nguyen S, Cherry SR, Tsai JH, Tucker SM, Weaver WM, Kelso A, Jaenisch R, Wilson CB (2001) A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15(5):763–774PubMedCrossRefGoogle Scholar
  39. 39.
    Zhang DJ, Wang Q, Wei J, Baimukanova G, Buchholz F, Stewart AF, Mao X, Killeen N (2005) Selective expression of the Cre recombinase in late-stage thymocytes using the distal promoter of the Lck gene. J Immunol 174(11):6725–6731PubMedCrossRefGoogle Scholar
  40. 40.
    Orban PC, Chui D, Marth JD (1992) Tissue- and site-specific DNA recombination in transgenic mice. Proc Natl Acad Sci U S A 89(15):6861–6865PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Hennet T, Hagen FK, Tabak LA, Marth JD (1995) T-cell-specific deletion of a polypeptide N-acetylgalactosaminyl-transferase gene by site-directed recombination. Proc Natl Acad Sci U S A 92(26):12070–12074PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Takahama Y, Ohishi K, Tokoro Y, Sugawara T, Yoshimura Y, Okabe M, Kinoshita T, Takeda J (1998) Functional competence of T cells in the absence of glycosylphosphatidylinositol-anchored proteins caused by T cell-specific disruption of the Pig-a gene. Eur J Immunol 28(7):2159–2166. doi: 10.1002/(SICI)1521-4141(199807)28:07<2159::AID-IMMU2159>3.0.CO;2-B PubMedCrossRefGoogle Scholar
  43. 43.
    Maekawa Y, Minato Y, Ishifune C, Kurihara T, Kitamura A, Kojima H, Yagita H, Sakata-Yanagimoto M, Saito T, Taniuchi I, Chiba S, Sone S, Yasutomo K (2008) Notch2 integrates signaling by the transcription factors RBP-J and CREB1 to promote T cell cytotoxicity. Nat Immunol 9(10):1140–1147. doi: 10.1038/ni.1649 PubMedCrossRefGoogle Scholar
  44. 44.
    Park JH, Adoro S, Guinter T, Erman B, Alag AS, Catalfamo M, Kimura MY, Cui Y, Lucas PJ, Gress RE, Kubo M, Hennighausen L, Feigenbaum L, Singer A (2010) Signaling by intrathymic cytokines, not T cell antigen receptors, specifies CD8 lineage choice and promotes the differentiation of cytotoxic-lineage T cells. Nat Immunol 11(3):257–264. doi: 10.1038/ni.1840 PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Klinger M, Kim JK, Chmura SA, Barczak A, Erle DJ, Killeen N (2009) Thymic OX40 expression discriminates cells undergoing strong responses to selection ligands. J Immunol 182(8):4581–4589. doi: 10.4049/jimmunol.0900010 PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Jacob J, Baltimore D (1999) Modelling T-cell memory by genetic marking of memory T cells in vivo. Nature 399(6736):593–597. doi: 10.1038/21208 PubMedCrossRefGoogle Scholar
  47. 47.
    Eckelhart E, Warsch W, Zebedin E, Simma O, Stoiber D, Kolbe T, Rulicke T, Mueller M, Casanova E, Sexl V (2011) A novel Ncr1-Cre mouse reveals the essential role of STAT5 for NK-cell survival and development. Blood 117(5):1565–1573. doi: 10.1182/blood-2010-06-291633 PubMedCrossRefGoogle Scholar
  48. 48.
    Narni-Mancinelli E, Chaix J, Fenis A, Kerdiles YM, Yessaad N, Reynders A, Gregoire C, Luche H, Ugolini S, Tomasello E, Walzer T, Vivier E (2011) Fate mapping analysis of lymphoid cells expressing the NKp46 cell surface receptor. Proc Natl Acad Sci U S A 108(45):18324–18329. doi: 10.1073/pnas.1112064108 PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Shi J, Petrie HT (2012) Activation kinetics and off-target effects of thymus-initiated cre transgenes. PLoS One 7(10):e46590. doi: 10.1371/journal.pone.0046590 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Eva Bauer
    • 1
  • Agnieszka Witalisz
    • 2
  • Birgit Strobl
    • 2
  • Dagmar Stoiber
    • 3
    • 4
  1. 1.Ludwig Boltzmann Institute for Cancer ResearchViennaAustria
  2. 2.Institute of Animal Breeding and GeneticsUniversity of Veterinary MedicineViennaAustria
  3. 3.Institute of PharmacologyMedical University of ViennaViennaAustria
  4. 4.Ludwig Boltzmann Institute for Cancer ResearchLudwig Boltzmann GesellschaftViennaAustria

Personalised recommendations