ETS and DEAS Studies of the Reduction of Xenobiotics in Mitochondrial Intermembrane Space

  • Stanislav A. PshenichnyukEmail author
  • Alberto Modelli
Part of the Methods in Molecular Biology book series (MIMB, volume 1265)


This chapter describes the complementary experimental techniques electron transmission spectroscopy (ETS) and dissociative electron attachment spectroscopy (DEAS), two of the most suitable means for investigating interactions between electrons and gas-phase molecules, resonance formation of temporary molecular negative ions, and their possible decay through the dissociative electron attachment (DEA) mechanism. The latter can be seen as the gas-phase counterpart of the transfer of a solvated electron in solution, accompanied by dissociation of the molecular anion, referred to as dissociative electron transfer (DET). DET takes place in vivo under reductive conditions, for instance, in the intermembrane space of mitochondria under interaction of xenobiotic molecules with electrons “leaked” from the respiration chain. Experimental procedures supported by suitable quantum chemical calculations are described in detail and illustrated by an example of ETS/DEAS study of rhodanine which shows rich fragmentation under gas-phase resonance electron attachment.

Key words

Resonance electron attachment Temporary negative ions Xenobiotics One-electron reduction Molecular mechanism Mitochondria 



Thanks are due to the Russian Foundation for Basic Research (grants #12-03-00223-a and #14-03-00087-a), St. Petersburg State University (scientific project #, and the Italian Ministero dell’Istruzione, dell’Università e della Ricerca for financial support.


  1. 1.
    Omiecinski CJ, Vanden Heuvel JP, Perdew GH, Peters JM (2011) Xenobiotic metabolism, disposition, and regulation by receptors: from biochemical phenomenon to predictors of major toxicities. Toxicol Sci 120(S1):S49–S75CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Nizzetto L, Macleod M, Borgå K, Cabrerizo A, Dachs J, Guardo AD et al (2010) Past, present, and future controls on levels of persistent organic pollutants in the global environment. Environ Sci Technol 44:6526–6531CrossRefPubMedGoogle Scholar
  3. 3.
    Scatena R (2012) Mitochondria and drugs. Adv Exp Med Biol 942:329–346CrossRefPubMedGoogle Scholar
  4. 4.
    Szewczyk A, Wojtczak L (2002) Mitochondria as a pharmacological target. Pharmacol Rev 54:101–127CrossRefPubMedGoogle Scholar
  5. 5.
    Smith RAJ, Hartley RC, Murphy MP (2011) Mitochondria-targeted small molecule therapeutics and probes. Antioxid Redox Signal 15:3021–3038CrossRefPubMedGoogle Scholar
  6. 6.
    Koopman WJH, Willems PHGM, Smeitink JAM (2012) Monogenic mitochondrial disorders. N Engl J Med 366:1132–1141CrossRefPubMedGoogle Scholar
  7. 7.
    Jang YC, Remmen HV (2009) The mitochondrial theory of aging: insight from transgenic and knockout mouse models. Exp Gerontol 44:256–260CrossRefPubMedGoogle Scholar
  8. 8.
    Lenaz G (2001) The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life 52:159–164CrossRefPubMedGoogle Scholar
  9. 9.
    Edeas M, Weissig V (2013) Targeting mitochondria: strategies, innovations and challenges. The future of medicine will come through mitochondria. Mitochondrion 13:389–390CrossRefPubMedGoogle Scholar
  10. 10.
    Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Ervin KM, Anusiewicz I, Skurski P, Simons J, Lineberger WC (2003) The only stable state of O2 is the X2Πg ground state and it (still!) has an adiabatic electron detachment energy of 0.45 eV. J Phys Chem A 107:8521–8529CrossRefGoogle Scholar
  12. 12.
    Biaglow JE (1981) Cellular electron transfer and radical mechanisms for drug metabolism. Radiat Res 86:212–242CrossRefPubMedGoogle Scholar
  13. 13.
    Antonello S, Maran F (2005) Intramolecular dissociative electron transfer. Chem Soc Rev 34:418–428CrossRefPubMedGoogle Scholar
  14. 14.
    Wang C-R, Nguyen J, Lu Q-B (2009) Bond breaks of nucleotides by dissociative electron transfer of nonequilibrium prehydrated electrons: a new molecular mechanism for reductive DNA damage. J Am Chem Soc 131:11320–11322CrossRefPubMedGoogle Scholar
  15. 15.
    Alizadeh E, Sanche L (2012) Precursors of solvated electrons in radiobiological physics and chemistry. Chem Rev 112:5578–5602CrossRefPubMedGoogle Scholar
  16. 16.
    Abel B, Buck U, Sobolewski AL, Domcke W (2012) On the nature and signatures of the solvated electron in water. Phys Chem Chem Phys 14:22–34CrossRefPubMedGoogle Scholar
  17. 17.
    Schulz GJ (1973) Resonances in electron impact on atoms; resonances in electron impact on diatomic molecules. Rev Mod Phys 45(378–423):423–486CrossRefGoogle Scholar
  18. 18.
    Illenberger E, Momigny J (1992) Gaseous molecular ions. An introduction to elementary processes induced by ionization. Steinkopff Verlag, DarmstadtGoogle Scholar
  19. 19.
    Christophorou LG (1984) Electron-molecule interactions and their applications. Academic, Orlando, FLGoogle Scholar
  20. 20.
    Pshenichnyuk SA, Modelli A (2013) Can mitochondrial dysfunction be initiated by dissociative electron attachment to xenobiotics? Phys Chem Chem Phys 15:9125–9135CrossRefPubMedGoogle Scholar
  21. 21.
    Lyapustina SA, Xu S, Nilles JM, Bowen KH (2000) Solvent-induced stabilization of the naphthalene anion by water molecules: a negative cluster ion photoelectron spectroscopic study. J Chem Phys 112:6643–6648CrossRefGoogle Scholar
  22. 22.
    Christophorou LG, Hadjiantoniou D (2006) Electron attachment and molecular toxicity. Chem Phys Lett 419:405–410CrossRefGoogle Scholar
  23. 23.
    Pshenichnyuk SA, Komolov AS (2012) Relation between electron scattering resonances of isolated NTCDA molecules and maxima in the density of unoccupied states of condensed NTCDA layers. J Phys Chem A 116:761–766CrossRefPubMedGoogle Scholar
  24. 24.
    Fabrikant II, Caprasecca S, Gallup GA et al (2012) Electron attachment to molecules in a cluster environment. J Chem Phys 136:184301/1–8CrossRefGoogle Scholar
  25. 25.
    Pshenichnyuk SA, Modelli A (2014) Resonance electron attachment to plant hormones and its likely connection with biochemical processes. J Chem Phys 140:034313/1–11CrossRefGoogle Scholar
  26. 26.
    Pshenichnyuk SA, Modelli A (2012) Electron attachment to antipyretics: possible implications of their metabolic pathways. J Chem Phys 136:234307/1–11CrossRefGoogle Scholar
  27. 27.
    Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ (2003) Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem 278:36027–36031CrossRefPubMedGoogle Scholar
  28. 28.
    Gregory NL (1966) Carbon tetrachloride toxicity and electron capture. Nature 212:1460–1461CrossRefPubMedGoogle Scholar
  29. 29.
    Allan M (1989) Study of triplet states and short-lived negative ions by means of electron impact spectroscopy. J Elec Spec Rel Phenom 48:219–351CrossRefGoogle Scholar
  30. 30.
    Sanche L, Schulz GJ (1972) Electron transmission spectroscopy: rare gases. Phys Rev A 5:1672–1683CrossRefGoogle Scholar
  31. 31.
    Jordan KD, Burrow PD (1987) Temporary anion states of polyatomic hydrocarbons. Chem Rev 87:557–588CrossRefGoogle Scholar
  32. 32.
    Modelli A, Pshenichnyuk SA (2013) Gas-phase dissociative electron attachment to flavonoids and possible similarities to their metabolic pathways. Phys Chem Chem Phys 15:1588–1600CrossRefPubMedGoogle Scholar
  33. 33.
    Modelli A, Jones D, Pshenichnyuk SA (2013) Electron attachment to indole and related molecules. J Chem Phys 139:184305/1–9CrossRefGoogle Scholar
  34. 34.
    Staley SS, Strnad JT (1994) Calculation of the energies of π* negative ion resonance states by the use of Koopmans’ theorem. J Phys Chem 98:116–121CrossRefGoogle Scholar
  35. 35.
    Chen DA, Gallup GA (1990) The relationship of the virtual orbitals of self-consistent-field theory to temporary negative ions in electron scattering from molecules. J Chem Phys 93:8893/1–9Google Scholar
  36. 36.
    Simons J, Jordan KD (1987) Ab initio electronic structure of anions. Chem Rev 87:535–555CrossRefGoogle Scholar
  37. 37.
    Lane NF (1980) The theory of electron-molecule collisions. Rev Mod Phys 52:29–119CrossRefGoogle Scholar
  38. 38.
    Fabrikant II (2010) Recent progress in the theory of dissociative attachment: from diatomic to biomolecules. J Phys Conf Ser 204:012004/1–11CrossRefGoogle Scholar
  39. 39.
    Modelli A, Jones D, Distefano G (1982) ETS study of the negative ion states of t-butyl and trimethylsilyl derivatives of ethylene and benzene. Chem Phys Lett 86:434–437CrossRefGoogle Scholar
  40. 40.
    Modelli A, Foffani A, Scagnolari F, Jones D (1989) Effect of halo-substitution on the lowest-lying empty π* orbitals in benzene derivatives: electron transmission and dissociative attachment spectra. Chem Phys Lett 163:269–275CrossRefGoogle Scholar
  41. 41.
    Stamatovic A, Schulz GJ (1970) Characteristics of the trochoidal electron monochromator. Rev Sci Instrum 41:423–427CrossRefGoogle Scholar
  42. 42.
    Johnston AR, Burrow PD (1982) Scattered-electron rejection in electron transmission spectroscopy. J Elec Spec Rel Phenom 25:119–133CrossRefGoogle Scholar
  43. 43.
    Brunt JNH, King GC, Read FH (1977) Resonance structure in elastic scattering from helium, neon and argon. J Phys B 10:1289CrossRefGoogle Scholar
  44. 44.
    Aflatooni K, Gallup GA, Burrow PD (2000) Temporary anion states of dichloroalkanes and selected polychloroalkanes. J Phys Chem A 104:7359–7369CrossRefGoogle Scholar
  45. 45.
    Khvostenko VI (1981) Negative ions mass spectrometry in organic chemistry. Nauka, Moscow (in Russian)Google Scholar
  46. 46.
    Pshenichnyuk SA, Asfandiarov NL (2003) The role of free electrons in MALDI: electron capture by molecules of alpha-cyano-4-hydroxycinnamic acid. Eur J Mass Spectrom 10:477–486CrossRefGoogle Scholar
  47. 47.
    Sharp TE, Dowell JT (1969) Dissociative attachment of electrons in ammonia and ammonia‐d3. J Chem Phys 50:3024CrossRefGoogle Scholar
  48. 48.
    Chantry PJ (1972) Dissociative attachment in carbon dioxide. J Chem Phys 57:3180CrossRefGoogle Scholar
  49. 49.
    Hipple JA, Condon EU (1945) Detection of metastable ions with the mass spectrometer. Phys Rev 68:54–55CrossRefGoogle Scholar
  50. 50.
    Hipple JA, Fox RE, Condon EU (1946) Metastable ions formed by electron impact in hydrocarbon gases. Phys Rev 69:347CrossRefGoogle Scholar
  51. 51.
    Donnally BL, Carr HE (1954) Metastable negative ions. Phys Rev 93:111CrossRefGoogle Scholar
  52. 52.
    Graupner K, Field TA, Mauracher A et al (2008) Fragmentation of metastable SF6 * ions with microsecond lifetimes in competition with autodetachment. J Chem Phys 128:104304CrossRefPubMedGoogle Scholar
  53. 53.
    Pshenichnyuk SA, Modelli A (2010) Complex fragmentation pathways of rhodanine and rhodanine-3-acetic acid upon resonant capture of low-energy electrons. Int J Mass Spectrom 294:93–102CrossRefGoogle Scholar
  54. 54.
    Edelson D, Griffiths JE, McAfee KB (1962) Autodetachment of electrons in sulfur hexafluoride. J Chem Phys 37:917–918CrossRefGoogle Scholar
  55. 55.
    Pshenichnyuk SA, Vorob’ev AS, Asfandiarov NL, Modelli A (2010) Molecular anion formation in 9, 10-anthraquinone: dependence of the electron detachment rate on temperature and incident electron energy. J Chem Phys 132:244313CrossRefPubMedGoogle Scholar
  56. 56.
    Odom RW, Smith DL, Futrell JH (1975) A study of electron attachment to SF6 and auto-detachment and stabilization of SF6 . J Phys B Atom Mol Phys 8:1349CrossRefGoogle Scholar
  57. 57.
    Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford, CTGoogle Scholar
  58. 58.
    Becke AD (1993) Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648/1–5Google Scholar
  59. 59.
    Modelli A (2003) Electron attachment and intramolecular electron transfer in unsaturated chloroderivatives. Phys Chem Chem Phys 5:2923–2930CrossRefGoogle Scholar
  60. 60.
    Scheer AM, Aflatooni K, Gallup GA, Burrow PD (2014) Temporary anion states of three herbicide families. J Phys Chem A 118: 7242–7248Google Scholar
  61. 61.
    Burrow PD, Gallup GA, Modelli A (2008) Are there π* shape resonances in electron scattering from phosphate groups? J Phys Chem A 112:4106–4113CrossRefPubMedGoogle Scholar
  62. 62.
    Burrow PD, Modelli A (2013) On the treatment of LUMO energies for their use as descriptors. SAR QSAR Environ Res 24:647–659CrossRefPubMedGoogle Scholar
  63. 63.
    Modelli A, Hajgató B, Nixon JF, Nyulászi L (2004) Anionic states of six-membered aromatic phosphorus heterocycles as studied by electron transmission spectroscopy and ab initio methods. J Phys Chem A 108:7440–7447CrossRefGoogle Scholar
  64. 64.
    Modelli A, Jones D, Pshenichnyuk SA (2009) Electron attachment to dye-sensitized solar cell components: rhodanine and rhodanine-3-acetic acid. J Phys Chem C 114:1725–1732CrossRefGoogle Scholar
  65. 65.
    Pshenichnyuk SA, Asfandiarov NL, Burrow PD (2007) A relation between energies of the short-lived negative ion states and energies of unfilled molecular orbitals for a series of bromoalkanes. Russ Chem Bull 56:1268–1270CrossRefGoogle Scholar
  66. 66.
    Modelli A, Guerra M, Jones D, Distefano G, Tronc M (1998) Low-energy electron capture in group 14 methyl chlorides and tetrachlorides: electron transmission and dissociative electron attachment spectra and MS-Xα calculations. J Chem Phys 108:9004–9015CrossRefGoogle Scholar
  67. 67.
    Pearl DM, Burrow PD (1994) Dissociative attachment in selected monochloroalkanes. J Chem Phys 101:2940–2948CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute of Molecule and Crystal Physics, Ufa Research CentreRussian Academy of SciencesUfaRussia
  2. 2.Physics FacultySt. Petersburg State UniversitySt. PetersburgRussia
  3. 3.Dipartimento di Chimica “G. Ciamician”Università di BolognaBolognaItaly
  4. 4.Centro Interdipartimentale di Ricerca in Scienze AmbientaliRavennaItaly

Personalised recommendations