Computational Prediction of Short Linear Motifs from Protein Sequences

  • Richard J. Edwards
  • Nicolas Palopoli
Part of the Methods in Molecular Biology book series (MIMB, volume 1268)


Short Linear Motifs (SLiMs) are functional protein microdomains that typically mediate interactions between a short linear region in one protein and a globular domain in another. SLiMs usually occur in structurally disordered regions and mediate low affinity interactions. Most SLiMs are 3–15 amino acids in length and have 2–5 defined positions, making them highly likely to occur by chance and extremely difficult to identify. Nevertheless, our knowledge of SLiMs and capacity to predict them from protein sequence data using computational methods has advanced dramatically over the past decade. By considering the biological, structural, and evolutionary context of SLiM occurrences, it is possible to differentiate functional instances from chance matches in many cases and to identify new regions of proteins that have the features consistent with a SLiM-mediated interaction. Their simplicity also makes SLiMs evolutionarily labile and prone to independent origins on different sequence backgrounds through convergent evolution, which can be exploited for predicting novel SLiMs in proteins that share a function or interaction partner.

In this review, we explore our current knowledge of SLiMs and how it can be applied to the task of predicting them computationally from protein sequences. Rather than focusing on specific SLiM prediction tools, we provide an overview of the methods available and concentrate on principles that should continue to be paramount even in the light of future developments. We consider the relative merits of using regular expressions or profiles for SLiM discovery and discuss the main considerations for both predicting new instances of known SLiMs, and de novo prediction of novel SLiMs. In particular, we highlight the importance of correctly modelling evolutionary relationships and the probability of false positive predictions.

Key words

Short linear motifs SLiM Motif discovery Protein-protein interactions Posttranslational modifications Intrinsically disordered proteins Regular expressions Sequence profiles Sequence motifs 



Domain-motif interaction


Eukaryotic linear motif


False positive rate


Gene ontology


Hidden Markov model


Intrinsically disordered protein


Intrinsically disordered region


(l, d) motif search


Minimotif miner


Molecular recognition feature


Minimum spanning tree


Protein-protein interaction


Position-specific scoring matrix


Posttranslational modification


Regular expression


Short linear motif


True positive rate


  1. 1.
    Davey NE, Van Roey K, Weatheritt RJ et al (2012) Attributes of short linear motifs. Mol Biosyst 8(1):268–281PubMedGoogle Scholar
  2. 2.
    Pawson T (1995) Protein modules and signalling networks. Nature 373(6515):573–580PubMedGoogle Scholar
  3. 3.
    Davis BD, Tai PC (1980) The mechanism of protein secretion across membranes. Nature 283(5746):433–438PubMedGoogle Scholar
  4. 4.
    Aasland R, Abrams C, Ampe C et al (2002) Normalization of nomenclature for peptide motifs as ligands of modular protein domains. FEBS Lett 513(1):141–144PubMedGoogle Scholar
  5. 5.
    Puntervoll P, Linding R, Gemund C et al (2003) ELM server: a new resource for investigating short functional sites in modular eukaryotic proteins. Nucleic Acids Res 31(13):3625–3630PubMedCentralPubMedGoogle Scholar
  6. 6.
    Pancsa R, Fuxreiter M (2012) Interactions via intrinsically disordered regions: what kind of motifs? IUBMB Life 64(6):513–520PubMedGoogle Scholar
  7. 7.
    Neduva V, Russell RB (2006) Peptides mediating interaction networks: new leads at last. Curr Opin Biotechnol 17(5):465–471PubMedGoogle Scholar
  8. 8.
    Diella F, Haslam N, Chica C et al (2008) Understanding eukaryotic linear motifs and their role in cell signaling and regulation. Front Biosci 13:6580–6603PubMedGoogle Scholar
  9. 9.
    Dinkel H, Van Roey K, Michael S et al (2014) The eukaryotic linear motif resource ELM: 10 years and counting. Nucleic Acids Res 42(1):D259–D266PubMedCentralPubMedGoogle Scholar
  10. 10.
    Mi T, Merlin JC, Deverasetty S et al (2012) Minimotif Miner 3.0: database expansion and significantly improved reduction of false-positive predictions from consensus sequences. Nucleic Acids Res 40(Database issue):D252–D260PubMedCentralPubMedGoogle Scholar
  11. 11.
    Davey NE, Edwards RJ, Shields DC (2010) Computational identification and analysis of protein short linear motifs. Front Biosci (Landmark Ed) 15:801–825Google Scholar
  12. 12.
    Neduva V, Russell RB (2005) Linear motifs: evolutionary interaction switches. FEBS Lett 579(15):3342–3345PubMedGoogle Scholar
  13. 13.
    Van Roey K, Gibson TJ, Davey NE (2012) Motif switches: decision-making in cell regulation. Curr Opin Struct Biol 22(3):378–385PubMedGoogle Scholar
  14. 14.
    Vyas J, Nowling RJ, Maciejewski MW et al (2009) A proposed syntax for Minimotif Semantics, version 1. BMC Genomics 10:360PubMedCentralPubMedGoogle Scholar
  15. 15.
    Davey NE, Trave G, Gibson TJ (2011) How viruses hijack cell regulation. Trends Biochem Sci 36(3):159–169PubMedGoogle Scholar
  16. 16.
    Garamszegi S, Franzosa EA, Xia Y (2013) Signatures of pleiotropy, economy and convergent evolution in a domain-resolved map of human-virus protein-protein interaction networks. PLoS Pathog 9(12):e1003778PubMedCentralPubMedGoogle Scholar
  17. 17.
    Davey NE, Edwards RJ, Shields DC (2010) Estimation and efficient computation of the true probability of recurrence of short linear protein sequence motifs in unrelated proteins. BMC Bioinform 11:14Google Scholar
  18. 18.
    Sigrist CJ, Cerutti L, Hulo N et al (2002) PROSITE: a documented database using patterns and profiles as motif descriptors. Brief Bioinform 3(3):265–274PubMedGoogle Scholar
  19. 19.
    Xia X (2012) Position weight matrix, gibbs sampler, and the associated significance tests in motif characterization and prediction. Scientifica (Cairo) 2012:917540Google Scholar
  20. 20.
    Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14(9):755–763PubMedGoogle Scholar
  21. 21.
    Krogh A, Brown M, Mian IS et al (1994) Hidden Markov models in computational biology. Applications to protein modeling. J Mol Biol 235(5):1501–1531PubMedGoogle Scholar
  22. 22.
    Obenauer JC, Cantley LC, Yaffe MB (2003) Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res 31(13):3635–3641PubMedCentralPubMedGoogle Scholar
  23. 23.
    Yoon BJ (2009) Hidden Markov models and their applications in biological sequence analysis. Curr Genomics 10(6):402–415PubMedCentralPubMedGoogle Scholar
  24. 24.
    Seiler M, Mehrle A, Poustka A et al (2006) The 3of5 web application for complex and comprehensive pattern matching in protein sequences. BMC Bioinform 7:144Google Scholar
  25. 25.
    Davey NE, Haslam NJ, Shields DC et al (2010) SLiMSearch: a webserver for finding novel occurrences of short linear motifs in proteins, incorporating sequence context. Lect Notes Bioinform 6282:50–61Google Scholar
  26. 26.
    Meszaros B, Dosztanyi Z, Simon I (2012) Disordered binding regions and linear motifs–bridging the gap between two models of molecular recognition. PLoS One 7(10):e46829PubMedCentralPubMedGoogle Scholar
  27. 27.
    Davey NE, Shields DC, Edwards RJ (2009) Masking residues using context-specific evolutionary conservation significantly improves short linear motif discovery. Bioinformatics 25(4):443–450PubMedGoogle Scholar
  28. 28.
    Brown CJ, Takayama S, Campen AM et al (2002) Evolutionary rate heterogeneity in proteins with long disordered regions. J Mol Evol 55(1):104–110PubMedGoogle Scholar
  29. 29.
    Tóth-Petróczy A, Mészáros B, Simon I et al (2008) Assessing conservation of disordered regions in proteins. Open Proteom J 1:46–53Google Scholar
  30. 30.
    Fuxreiter M, Tompa P, Simon I (2007) Local structural disorder imparts plasticity on linear motifs. Bioinformatics 23(8):950–956PubMedGoogle Scholar
  31. 31.
    Remaut H, Waksman G (2006) Protein-protein interaction through beta-strand addition. Trends Biochem Sci 31(8):436–444PubMedGoogle Scholar
  32. 32.
    Cino EA, Choy WY, Karttunen M (2013) Conformational biases of linear motifs. J Phys Chem B 117(50):15943–15957PubMedGoogle Scholar
  33. 33.
    Abeln S, Frenkel D (2008) Disordered flanks prevent peptide aggregation. PLoS Comput Biol 4(12):e1000241PubMedCentralPubMedGoogle Scholar
  34. 34.
    Sehnal D, Varekova RS, Huber HJ et al (2012) SiteBinder: an improved approach for comparing multiple protein structural motifs. J Chem Inf Model 52(2):343–359PubMedGoogle Scholar
  35. 35.
    Buljan M, Chalancon G, Eustermann S et al (2012) Tissue-specific splicing of disordered segments that embed binding motifs rewires protein interaction networks. Mol Cell 46(6):871–883PubMedCentralPubMedGoogle Scholar
  36. 36.
    Weatheritt RJ, Davey NE, Gibson TJ (2012) Linear motifs confer functional diversity onto splice variants. Nucleic Acids Res 40(15):7123–7131PubMedCentralPubMedGoogle Scholar
  37. 37.
    Weatheritt RJ, Gibson TJ (2012) Linear motifs: lost in (pre)translation. Trends Biochem Sci 37(8):333–341PubMedGoogle Scholar
  38. 38.
    Wan J, Qian SB (2014) TISdb: a database for alternative translation initiation in mammalian cells. Nucleic Acids Res 42(1):D845–D850PubMedCentralPubMedGoogle Scholar
  39. 39.
    Kochetov AV (2008) Alternative translation start sites and hidden coding potential of eukaryotic mRNAs. Bioessays 30(7):683–691PubMedGoogle Scholar
  40. 40.
    UniProt C (2014) Activities at the universal protein resource (UniProt). Nucleic Acids Res 42(1):D191–D198Google Scholar
  41. 41.
    Edwards RJ, Davey NE, Shields DC (2007) SLiMFinder: a probabilistic method for identifying over-represented, convergently evolved, short linear motifs in proteins. PLoS One 2(10):e967PubMedCentralPubMedGoogle Scholar
  42. 42.
    Davey NE, Edwards RJ, Shields DC (2007) The SLiMDisc server: short, linear motif discovery in proteins. Nucleic Acids Res 35(Web Server issue):W455–W459PubMedCentralPubMedGoogle Scholar
  43. 43.
    Flicek P, Amode MR, Barrell D et al (2014) Ensembl 2014. Nucleic Acids Res 42(1):D749–D755PubMedCentralPubMedGoogle Scholar
  44. 44.
    Oldfield CJ, Cheng Y, Cortese MS et al (2005) Coupled folding and binding with alpha-helix-forming molecular recognition elements. Biochemistry 44(37):12454–12470PubMedGoogle Scholar
  45. 45.
    Mohan A, Oldfield CJ, Radivojac P et al (2006) Analysis of molecular recognition features (MoRFs). J Mol Biol 362(5):1043–1059PubMedGoogle Scholar
  46. 46.
    Vacic V, Oldfield CJ, Mohan A et al (2007) Characterization of molecular recognition features, MoRFs, and their binding partners. J Proteome Res 6(6):2351–2366PubMedCentralPubMedGoogle Scholar
  47. 47.
    Stein A, Aloy P (2008) Contextual specificity in peptide-mediated protein interactions. PLoS One 3(7):e2524PubMedCentralPubMedGoogle Scholar
  48. 48.
    Teyra J, Sidhu SS, Kim PM (2012) Elucidation of the binding preferences of peptide recognition modules: SH3 and PDZ domains. FEBS Lett 586(17):2631–2637PubMedGoogle Scholar
  49. 49.
    Liu Y, Woods NT, Kim D et al (2011) Yeast two-hybrid junk sequences contain selected linear motifs. Nucleic Acids Res 39(19):e128PubMedCentralPubMedGoogle Scholar
  50. 50.
    Eisenhaber B, Eisenhaber F (2010) Prediction of posttranslational modification of proteins from their amino acid sequence. Methods Mol Biol 609:365–384PubMedGoogle Scholar
  51. 51.
    Trost B, Kusalik A (2011) Computational prediction of eukaryotic phosphorylation sites. Bioinformatics 27(21):2927–2935PubMedGoogle Scholar
  52. 52.
    Sigrist CJ, De Castro E, Langendijk-Genevaux PS et al (2005) ProRule: a new database containing functional and structural information on PROSITE profiles. Bioinformatics 21(21):4060–4066PubMedGoogle Scholar
  53. 53.
    Sigrist CJ, de Castro E, Cerutti L et al (2013) New and continuing developments at PROSITE. Nucleic Acids Res 41(Database issue):D344–D347PubMedCentralPubMedGoogle Scholar
  54. 54.
    Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40(Database issue):D302–D305PubMedCentralPubMedGoogle Scholar
  55. 55.
    Punta M, Coggill PC, Eberhardt RY et al (2012) The Pfam protein families database. Nucleic Acids Res 40(Database issue):D290–D301PubMedCentralPubMedGoogle Scholar
  56. 56.
    Chica C, Labarga A, Gould CM et al (2008) A tree-based conservation scoring method for short linear motifs in multiple alignments of protein sequences. BMC Bioinform 9:229Google Scholar
  57. 57.
    Via A, Gould CM, Gemund C et al (2009) A structure filter for the Eukaryotic Linear Motif Resource. BMC Bioinform 10:351Google Scholar
  58. 58.
    Weatheritt RJ, Jehl P, Dinkel H et al (2012) iELM–a web server to explore short linear motif-mediated interactions. Nucleic Acids Res 40(Web Server issue):W364–W369PubMedCentralPubMedGoogle Scholar
  59. 59.
    Dinkel H, Chica C, Via A et al (2011) Phospho.ELM: a database of phosphorylation sites–update 2011. Nucleic Acids Res 39(Database issue):D261–D267PubMedCentralPubMedGoogle Scholar
  60. 60.
    Van Roey K, Dinkel H, Weatheritt RJ et al (2013) The switches.ELM resource: a compendium of conditional regulatory interaction interfaces. Sci Signal 6(269):rs7PubMedGoogle Scholar
  61. 61.
    Jin J, Pawson T (2012) Modular evolution of phosphorylation-based signalling systems. Philos Trans R Soc Lond B Biol Sci 367(1602):2540–2555PubMedCentralPubMedGoogle Scholar
  62. 62.
    Songyang Z, Blechner S, Hoagland N et al (1994) Use of an oriented peptide library to determine the optimal substrates of protein kinases. Curr Biol 4(11):973–982PubMedGoogle Scholar
  63. 63.
    Edwards RJ, Davey NE, O’Brien K et al (2012) Interactome-wide prediction of short, disordered protein interaction motifs in humans. Mol Biosyst 8(1):282–295PubMedGoogle Scholar
  64. 64.
    Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25(1):25–29PubMedCentralPubMedGoogle Scholar
  65. 65.
    Hamosh A, Scott AF, Amberger J et al (2000) Online mendelian inheritance in man (OMIM). Hum Mutat 15(1):57–61PubMedGoogle Scholar
  66. 66.
    Goel R, Harsha HC, Pandey A et al (2012) Human protein reference database and human proteinpedia as resources for phosphoproteome analysis. Mol Biosyst 8(2):453–463PubMedCentralPubMedGoogle Scholar
  67. 67.
    Safran M, Dalah I, Alexander J et al (2010) GeneCards Version 3: the human gene integrator. Database (Oxford) 2010:baq020Google Scholar
  68. 68.
    Davey NE, Haslam NJ, Shields DC et al (2011) SLiMSearch 2.0: biological context for short linear motifs in proteins. Nucleic Acids Res 39(Web Server issue):W56–W60PubMedCentralPubMedGoogle Scholar
  69. 69.
    Edwards RJ, Davey NE, Shields DC (2008) CompariMotif: quick and easy comparisons of sequence motifs. Bioinformatics 24(10):1307–1309PubMedGoogle Scholar
  70. 70.
    Marsico A, Scheubert K, Tuukkanen A et al (2010) MeMotif: a database of linear motifs in alpha-helical transmembrane proteins. Nucleic Acids Res 38(Database issue):D181–D189PubMedCentralPubMedGoogle Scholar
  71. 71.
    Neduva V, Linding R, Su-Angrand I et al (2005) Systematic discovery of new recognition peptides mediating protein interaction networks. PLoS Biol 3(12):e405PubMedCentralPubMedGoogle Scholar
  72. 72.
    Bailey TL, Boden M, Buske FA et al (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37(Web Server issue):W202–W208PubMedCentralPubMedGoogle Scholar
  73. 73.
    Grant CE, Bailey TL, Noble WS (2011) FIMO: scanning for occurrences of a given motif. Bioinformatics 27(7):1017–1018PubMedCentralPubMedGoogle Scholar
  74. 74.
    Frith MC, Saunders NF, Kobe B et al (2008) Discovering sequence motifs with arbitrary insertions and deletions. PLoS Comput Biol 4(4):e1000071PubMedCentralPubMedGoogle Scholar
  75. 75.
    Bailey TL, Gribskov M (1997) Score distributions for simultaneous matching to multiple motifs. J Comput Biol 4(1):45–59PubMedGoogle Scholar
  76. 76.
    de Castro E, Sigrist CJ, Gattiker A et al (2006) ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res 34(Web Server issue):W362–W365PubMedCentralPubMedGoogle Scholar
  77. 77.
    Davey NE, Shields DC, Edwards RJ (2006) SLiMDisc: short, linear motif discovery, correcting for common evolutionary descent. Nucleic Acids Res 34(12):3546–3554PubMedCentralPubMedGoogle Scholar
  78. 78.
    Peng ZL, Kurgan L (2012) Comprehensive comparative assessment of in-silico predictors of disordered regions. Curr Protein Pept Sci 13(1):6–18PubMedGoogle Scholar
  79. 79.
    Deng X, Eickholt J, Cheng J (2012) A comprehensive overview of computational protein disorder prediction methods. Mol Biosyst 8(1):114–121PubMedCentralPubMedGoogle Scholar
  80. 80.
    Dosztanyi Z, Csizmok V, Tompa P et al (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21(16):3433–3434PubMedGoogle Scholar
  81. 81.
    Haslam NJ, Shields DC (2012) Profile-based short linear protein motif discovery. BMC Bioinform 13:104Google Scholar
  82. 82.
    Sickmeier M, Hamilton JA, LeGall T et al (2007) DisProt: the database of disordered proteins. Nucleic Acids Res 35(Database issue):D786–D793PubMedCentralPubMedGoogle Scholar
  83. 83.
    Chen JW, Romero P, Uversky VN et al (2006) Conservation of intrinsic disorder in protein domains and families: I. A database of conserved predicted disordered regions. J Proteome Res 5(4):879–887PubMedCentralPubMedGoogle Scholar
  84. 84.
    Tompa P, Fuxreiter M, Oldfield CJ et al (2009) Close encounters of the third kind: disordered domains and the interactions of proteins. Bioessays 31(3):328–335PubMedGoogle Scholar
  85. 85.
    Williams RW, Xue B, Uversky VN et al (2013) Distribution and cluster analysis of predicted intrinsically disordered protein Pfam domains. Intrins Disord Prot 1:e25724Google Scholar
  86. 86.
    Schaeffer RD, Jonsson AL, Simms AM et al (2011) Generation of a consensus protein domain dictionary. Bioinformatics 27(1):46–54PubMedCentralPubMedGoogle Scholar
  87. 87.
    Towse CL, Daggett V (2012) When a domain is not a domain, and why it is important to properly filter proteins in databases: conflicting definitions and fold classification systems for structural domains make filtering of such databases imperative. Bioessays 34(12):1060–1069PubMedCentralPubMedGoogle Scholar
  88. 88.
    Linding R, Russell RB, Neduva V et al (2003) GlobPlot: exploring protein sequences for globularity and disorder. Nucleic Acids Res 31(13):3701–3708PubMedCentralPubMedGoogle Scholar
  89. 89.
    Mosca R, Ceol A, Stein A et al (2014) 3did: a catalog of domain-based interactions of known three-dimensional structure. Nucleic Acids Res 42(1):D374–D379PubMedCentralPubMedGoogle Scholar
  90. 90.
    Stein A, Aloy P (2010) Novel peptide-mediated interactions derived from high-resolution 3-dimensional structures. PLoS Comput Biol 6(5):e1000789PubMedCentralPubMedGoogle Scholar
  91. 91.
    Brannetti B, Helmer-Citterich M (2003) iSPOT: a web tool to infer the interaction specificity of families of protein modules. Nucleic Acids Res 31(13):3709–3711PubMedCentralPubMedGoogle Scholar
  92. 92.
    Trabuco LG, Lise S, Petsalaki E et al (2012) PepSite: prediction of peptide-binding sites from protein surfaces. Nucleic Acids Res 40(Web Server issue):W423–W427PubMedCentralPubMedGoogle Scholar
  93. 93.
    Perrodou E, Chica C, Poch O et al (2008) A new protein linear motif benchmark for multiple sequence alignment software. BMC Bioinform 9:213Google Scholar
  94. 94.
    Sayers EW, Barrett T, Benson DA et al (2011) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 39(Database issue):D38–D51PubMedCentralPubMedGoogle Scholar
  95. 95.
    Balla S, Thapar V, Verma S et al (2006) Minimotif Miner: a tool for investigating protein function. Nat Methods 3(3):175–177PubMedGoogle Scholar
  96. 96.
    Dinkel H, Sticht H (2007) A computational strategy for the prediction of functional linear peptide motifs in proteins. Bioinformatics 23(24):3297–3303PubMedGoogle Scholar
  97. 97.
    Davey NE, Cowan JL, Shields DC et al (2012) SLiMPrints: conservation-based discovery of functional motif fingerprints in intrinsically disordered protein regions. Nucleic Acids Res 40(21):10628–10641PubMedCentralPubMedGoogle Scholar
  98. 98.
    Chica C, Diella F, Gibson TJ (2009) Evidence for the concerted evolution between short linear protein motifs and their flanking regions. PLoS One 4(7):e6052PubMedCentralPubMedGoogle Scholar
  99. 99.
    O’Brien KT, Haslam NJ, Shields DC (2013) SLiMScape: a protein short linear motif analysis plugin for Cytoscape. BMC Bioinform 14:224Google Scholar
  100. 100.
    Davey NE, Haslam NJ, Shields DC et al (2010) SLiMFinder: a web server to find novel, significantly over-represented, short protein motifs. Nucleic Acids Res 38(Web Server issue):W534–W539PubMedCentralPubMedGoogle Scholar
  101. 101.
    Plewczynski D, Basu S, Saha I (2012) AMS 4.0: consensus prediction of post-translational modifications in protein sequences. Amino Acids 43(2):573–582PubMedCentralPubMedGoogle Scholar
  102. 102.
    Kerrien S, Aranda B, Breuza L et al (2012) The IntAct molecular interaction database in 2012. Nucleic Acids Res 40(Database issue):D841–D846PubMedCentralPubMedGoogle Scholar
  103. 103.
    Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402PubMedCentralPubMedGoogle Scholar
  104. 104.
    Via A, Gherardini PF, Ferraro E et al (2007) False occurrences of functional motifs in protein sequences highlight evolutionary constraints. BMC Bioinform 8:68Google Scholar
  105. 105.
    Nguyen Ba AN, Yeh BJ, van Dyk D et al (2012) Proteome-wide discovery of evolutionary conserved sequences in disordered regions. Sci Signal 5(215):rs1PubMedGoogle Scholar
  106. 106.
    Fang C, Noguchi T, Tominaga D et al (2013) MFSPSSMpred: identifying short disorder-to-order binding regions in disordered proteins based on contextual local evolutionary conservation. BMC Bioinform 14:300Google Scholar
  107. 107.
    Chou MF, Schwartz D (2011) Biological sequence motif discovery using motif-x. Curr Protoc Bioinform Chapter 13, Unit 13 15–24Google Scholar
  108. 108.
    Orchard S (2012) Molecular interaction databases. Proteomics 12(10):1656–1662PubMedGoogle Scholar
  109. 109.
    Jonassen I (1997) Efficient discovery of conserved patterns using a pattern graph. Comput Appl Biosci 13(5):509–522PubMedGoogle Scholar
  110. 110.
    Jonassen I, Collins JF, Higgins DG (1995) Finding flexible patterns in unaligned protein sequences. Protein Sci 4(8):1587–1595PubMedCentralPubMedGoogle Scholar
  111. 111.
    Neuwald AF, Green P (1994) Detecting patterns in protein sequences. J Mol Biol 239(5):698–712PubMedGoogle Scholar
  112. 112.
    Rigoutsos I, Floratos A (1998) Combinatorial pattern discovery in biological sequences: the TEIRESIAS algorithm. Bioinformatics 14(1):55–67PubMedGoogle Scholar
  113. 113.
    Neduva V, Russell RB (2006) DILIMOT: discovery of linear motifs in proteins. Nucleic Acids Res 34(Web Server issue):W350–W355PubMedCentralPubMedGoogle Scholar
  114. 114.
    Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28–36PubMedGoogle Scholar
  115. 115.
    Lawrence CE, Reilly AA (1990) An expectation maximization (EM) algorithm for the identification and characterization of common sites in unaligned biopolymer sequences. Proteins 7(1):41–51PubMedGoogle Scholar
  116. 116.
    Do CB, Batzoglou S (2008) What is the expectation maximization algorithm? Nat Biotechnol 26(8):897–899PubMedGoogle Scholar
  117. 117.
    Down TA, Hubbard TJ (2005) NestedMICA: sensitive inference of over-represented motifs in nucleic acid sequence. Nucleic Acids Res 33(5):1445–1453PubMedCentralPubMedGoogle Scholar
  118. 118.
    Dogruel M, Down TA, Hubbard TJ (2008) NestedMICA as an ab initio protein motif discovery tool. BMC Bioinform 9:19Google Scholar
  119. 119.
    Dinh H, Rajasekaran S (2013) PMS: a panoptic motif search tool. PLoS One 8(12):e80660PubMedCentralPubMedGoogle Scholar
  120. 120.
    Dinh H, Rajasekaran S, Davila J (2012) qPMS7: a fast algorithm for finding (l, d)-motifs in DNA and protein sequences. PLoS One 7(7):e41425PubMedCentralPubMedGoogle Scholar
  121. 121.
    Tan SH, Hugo W, Sung WK et al (2006) A correlated motif approach for finding short linear motifs from protein interaction networks. BMC Bioinform 7:502Google Scholar
  122. 122.
    Leung HC, Siu MH, Yiu SM et al (2009) Clustering-based approach for predicting motif pairs from protein interaction data. J Bioinform Comput Biol 7(4):701–716PubMedGoogle Scholar
  123. 123.
    Boyen P, Van Dyck D, Neven F et al (2011) SLIDER: a generic metaheuristic for the discovery of correlated motifs in protein-protein interaction networks. IEEE/ACM Trans Comput Biol Bioinform 8(5):1344–1357PubMedGoogle Scholar
  124. 124.
    Lieber DS, Elemento O, Tavazoie S (2010) Large-scale discovery and characterization of protein regulatory motifs in eukaryotes. PLoS One 5(12):e14444PubMedCentralPubMedGoogle Scholar
  125. 125.
    Dosztanyi Z, Meszaros B, Simon I (2009) ANCHOR: web server for predicting protein binding regions in disordered proteins. Bioinformatics 25(20):2745–2746PubMedCentralPubMedGoogle Scholar
  126. 126.
    Meszaros B, Simon I, Dosztanyi Z (2009) Prediction of protein binding regions in disordered proteins. PLoS Comput Biol 5(5):e1000376PubMedCentralPubMedGoogle Scholar
  127. 127.
    Cheng Y, Oldfield CJ, Meng J et al (2007) Mining alpha-helix-forming molecular recognition features with cross species sequence alignments. Biochemistry 46(47):13468–13477PubMedCentralPubMedGoogle Scholar
  128. 128.
    Disfani FM, Hsu WL, Mizianty MJ et al (2012) MoRFpred, a computational tool for sequence-based prediction and characterization of short disorder-to-order transitioning binding regions in proteins. Bioinformatics 28(12):i75–i83PubMedCentralPubMedGoogle Scholar
  129. 129.
    Mooney C, Pollastri G, Shields DC et al (2012) Prediction of short linear protein binding regions. J Mol Biol 415(1):193–204PubMedGoogle Scholar
  130. 130.
    Rose PW, Bi C, Bluhm WF et al (2013) The RCSB Protein Data Bank: new resources for research and education. Nucleic Acids Res 41(Database issue):D475–D482PubMedCentralPubMedGoogle Scholar
  131. 131.
    Betel D, Breitkreuz KE, Isserlin R et al (2007) Structure-templated predictions of novel protein interactions from sequence information. PLoS Comput Biol 3(9):1783–1789PubMedGoogle Scholar
  132. 132.
    Hugo W, Sung WK, Ng SK (2013) Discovering interacting domains and motifs in protein-protein interactions. Methods Mol Biol 939:9–20PubMedGoogle Scholar
  133. 133.
    Gibson TJ (2009) Cell regulation: determined to signal discrete cooperation. Trends Biochem Sci 34(10):471–482PubMedGoogle Scholar
  134. 134.
    Lam HY, Kim PM, Mok J et al (2010) MOTIPS: automated motif analysis for predicting targets of modular protein domains. BMC Bioinform 11:243Google Scholar
  135. 135.
    Schwartz D, Gygi SP (2005) An iterative statistical approach to the identification of protein phosphorylation motifs from large-scale data sets. Nat Biotechnol 23(11):1391–1398PubMedGoogle Scholar
  136. 136.
    Schwartz D, Chou MF, Church GM (2009) Predicting protein post-translational modifications using meta-analysis of proteome scale data sets. Mol Cell Proteomics 8(2):365–379PubMedCentralPubMedGoogle Scholar
  137. 137.
    Villen J, Beausoleil SA, Gerber SA et al (2007) Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci U S A 104(5):1488–1493PubMedCentralPubMedGoogle Scholar
  138. 138.
    Wilson-Grady JT, Villen J, Gygi SP (2008) Phosphoproteome analysis of fission yeast. J Proteome Res 7(3):1088–1097PubMedGoogle Scholar
  139. 139.
    Zhai B, Villen J, Beausoleil SA et al (2008) Phosphoproteome analysis of Drosophila melanogaster embryos. J Proteome Res 7(4):1675–1682PubMedCentralPubMedGoogle Scholar
  140. 140.
    Edwards RJ. SLiMSuite software package. 2013 [cited 25/1/14]; Available from:

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Biotechnology and Biomolecular SciencesUniversity of New South WalesSydneyAustralia
  2. 2.Centre for Biological SciencesUniversity of SouthamptonSouthamptonUK
  3. 3.Institute for Life SciencesUniversity of SouthamptonSouthamptonUK

Personalised recommendations