Construction and Application of a Photo-Cross-Linked Chemical Array

  • Yasumitsu Kondoh
  • Kaori Honda
  • Hiroyuki OsadaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1263)


Chemical array technology is a powerful tool for high-throughput screening of small-molecule ligand-protein interactions. A chemical array is a collection of small-molecule compounds spotted and immobilized on a glass slide surface, providing a multiplex platform to identify small-molecule compounds binding to a protein of interest in high-throughput screening. Several research groups have developed a variety of methods for the immobilization of small molecules onto a solid matrix. We have developed a unique photo-cross-linked chemical array for immobilizing small molecules in a functional-group-independent manner. In this chapter, we describe in detail a protocol for the construction of a photo-cross-linked chemical array and its application for ligand screening by using a tag-fused protein.

Key words

Chemical array High-throughput screening Photo-cross-linking Photoaffinity linker Trifluoromethylaryldiazirine PEG Proline Ligand screening 


  1. 1.
    MacBeath G, Koehler AN, Schreiber SL (1999) Printing small molecules as microarrays and detecting protein-ligand interactions en masse. J Am Chem Soc 121:7967–7968CrossRefGoogle Scholar
  2. 2.
    Kuruvilla FG et al (2002) Dissecting glucose signalling with diversity-orienter synthesis and small-molecule microarrays. Nature 416:653–657PubMedCrossRefGoogle Scholar
  3. 3.
    Ma H, Horiuchi KY (2006) Chemical microarray: a new tool for drug screening and discovery. Drug Discov Today 11:661–668PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Uttamchandani M, Wang J, Yao SQ (2006) Protein and small molecule microarrays: powerful tools for high-throughput proteomics. Mol Biosyst 2:58–68PubMedCrossRefGoogle Scholar
  5. 5.
    Vegas AJ, Fuller JH, Koehler AN (2008) Small-molecule microarrays as tools in ligand discovery. Chem Soc Rev 37:1385–1394PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Stanton BZ et al (2009) A small molecule that binds Hedgehog and blocks its signaling in human cells. Nat Chem Biol 5:154–156PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Park S, Shin I (2002) Fabrication of carbohydrate chips for studying protein-carbohydrate interactions. Angew Chem Int Ed 41:3180–3182CrossRefGoogle Scholar
  8. 8.
    Hergenrother PJ, Depew KM, Schreiber SL (2000) Small-molecule microarrays: covalent attachment and screening of alcohol-containing small molecules on glass slides. J Am Chem Soc 122:7849–7850CrossRefGoogle Scholar
  9. 9.
    Barnes-Seeman D et al (2003) Expanding the functional group compatibility of small-molecule microarrays: discovery of novel calmodulin ligands. Angew Chem Int Ed 42:2376–2379CrossRefGoogle Scholar
  10. 10.
    Walsh DP, Chang YT (2004) Recent advances in small molecule microarrays: applications and technology. Comb Chem High Throughput Screen 7:557–564PubMedCrossRefGoogle Scholar
  11. 11.
    Kanoh N et al (2003) Immobilization of natural products on glass slides by using a photoaffinity reaction and the detection of protein-small-molecule interactions. Angew Chem Int Ed 42:5584–5587CrossRefGoogle Scholar
  12. 12.
    Kanoh N et al (2006) Photo-cross-linked small-molecule microarrays as chemical genomic tools for dissecting protein-ligand interactions. Chem Asian J 1:789–797PubMedCrossRefGoogle Scholar
  13. 13.
    Brunner J, Senn H, Richards FM (1980) 3-Trifluoromethyl-3-phenyldiazirine. A new carbene generating group for photolabeling reagents. J Biol Chem 255:3313–3318PubMedGoogle Scholar
  14. 14.
    Sato S et al (2007) Polyproline-rod approach to isolating protein targets of bioactive small molecules: isolation of a new target of indomethacin. J Am Chem Soc 129:873–880PubMedCrossRefGoogle Scholar
  15. 15.
    Minagawa S et al (2011) Cyclic lipopeptide antibiotics bind to the N-terminal domain of the prokaryotic Hsp90 to inhibit the chaperone activity. Biochem J 435:237–246PubMedCrossRefGoogle Scholar
  16. 16.
    Miyazaki I et al (2008) Robust and systematic drug screening method using chemical arrays and the protein library: identification of novel inhibitors of carbonic anhydrase II. Biosci Biotechnol Biochem 72:2739–2749PubMedCrossRefGoogle Scholar
  17. 17.
    Miyazaki I et al (2010) A small-molecule inhibitor shows that pirin regulates migration of melanoma cells. Nat Chem Biol 6:667–673PubMedCrossRefGoogle Scholar
  18. 18.
    Burger M et al (2012) Crystal structure of the predicted phospholipase LYPLAL1 reveals unexpected functional plasticity in spite of close relationship to acyl protein thioesterases. J Lipid Res 53:43–50PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Zimmermann TJ et al (2013) Boronic acid inhibitors of acyl protein thioesterase 1 and 2. ChemBioChem 14:115–122PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yasumitsu Kondoh
    • 1
    • 2
  • Kaori Honda
    • 2
  • Hiroyuki Osada
    • 1
    • 2
    Email author
  1. 1.Antibiotics LaboratoryRIKENWako, SaitamaJapan
  2. 2.Chemical Biology Research GroupRIKEN Center for Sustainable Resource ScienceWako, SaitamaJapan

Personalised recommendations