Assessment of Mitochondrial Protein Glutathionylation as Signaling for CO Pathway

  • Ana S. Almeida
  • Helena L. A. VieiraEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1264)


Protein glutathionylation is a posttranslational process that regulates protein function in response to redox cellular changes. Furthermore, carbon monoxide-induced cellular pathways involve reactive oxygen species (ROS) signaling and mitochondrial protein glutathionylation. Herein, it is described a technique to assess mitochondrial glutathionylation due to low concentrations of CO exposure. Mitochondria are isolated from cell culture or tissue, followed by an immunoprecipitation assay, which allows the capture of any glutathionylated mitochondrial protein using a specific antibody coupled to a solid matrix that binds to glutathione antigen. The precipitated protein is further identified and quantified by immunoblotting analysis.

Key words

Glutathionylation Carbon monoxide Mitochondria Glutathione Immunoprecipitation 



This work was supported by the Portuguese Fundação para a Ciência e a Tecnologia (FCT-ANR/NEU-NMC/0022/2012) and the Portuguese Fundação para a Ciência e a Tecnologia for ASA’s SFRH/BD/78440/2011 fellowship.


  1. 1.
    Gallogly MM, Mieyal JJ (2007) Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress. Curr Opin Pharmacol 7(4):381–391PubMedCrossRefGoogle Scholar
  2. 2.
    Mieyal JJ, Chock PB (2012) Posttranslational modification of cysteine in redox signaling and oxidative stress: focus on s-glutathionylation. Antioxid Redox Signal 16(6):471–475PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Mp M (2012) Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. Antioxid Redox Signal 16(6):476–495CrossRefGoogle Scholar
  4. 4.
    Chen YR, Chen CL, Pfeiffer DR, Zweier JL (2007) Mitochondrial complex II in the post-ischemic heart. J Biol Chem 282(45):32640PubMedCrossRefGoogle Scholar
  5. 5.
    Giangregorio N, Palmieri F, Indiveri C (2013) Glutathione controls the redox state of the mitochondrial carnitine/acylcarnitine carrier Cys residues by glutathionylation. Biochim Biophys Acta 1830:5299–5304PubMedCrossRefGoogle Scholar
  6. 6.
    Kang PT, Zhang L, Chen C, Green-church KB, Chen R (2012) Protein thiyl radical mediates S-glutathionylation of complex I. Free Radic Biol Med 53(4):962–973PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Queiroga CSF, Almeida AS, Martel C, Brenner C, Alves PM, Vieira HLA (2010) Glutathionylation of adenine nucleotide translocase induced by carbon monoxide prevents mitochondrial membrane permeabilization and apoptosis. J Biol Chem 285(22):17077–17088PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Sun R, Eriksson S, Wang L (2012) Oxidative stress induced S-glutathionylation and proteolytic degradation of mitochondrial thymidine kinase 2. J Biol Chem 287(29):24304–24312PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Motterlini R, Otterbein LE (2010) The therapeutic potential of carbon monoxide. Nat Rev Drug Discov 9(9):728–743PubMedCrossRefGoogle Scholar
  10. 10.
    Bilban M, Haschemi A, Wegiel B, Chin BY, Wagner O, Otterbein LE (2008) Heme oxygenase and carbon monoxide initiate homeostatic signaling. J Mol Med 86(3):267–279PubMedCrossRefGoogle Scholar
  11. 11.
    Zuckerbraun BS, Chin BY, Bilban M et al (2007) Carbon monoxide signals via inhibition of cytochrome c oxidase and generation of mitochondrial reactive oxygen species. FASEB J 21(4):1099–1106PubMedCrossRefGoogle Scholar
  12. 12.
    Suliman HB, Carraway MS, Ali AS, Reynolds CM, Welty-wolf KE, Piantadosi CA (2007) The CO/HO system reverses inhibition of mitochondrial biogenesis and prevents murine doxorubicin cardiomyopathy. J Clin Invest 117(12):3730–3741PubMedCentralPubMedGoogle Scholar
  13. 13.
    Kim HS, Loughran PA, Billiar TR (2008) Carbon monoxide decreases the level of iNOS protein and active dimer in IL-1b-stimulated hepatocytes. Nitric Oxide 18:256–265PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Vieira HLA, Queiroga CSF, Alves PM (2008) Pre-conditioning induced by carbon monoxide provides neuronal protection against apoptosis. J Neurochem 107(2):375–384PubMedCrossRefGoogle Scholar
  15. 15.
    Scragg JL, Dallas ML, Wilkinson JA, Varadi G, Peers C (2008) Carbon monoxide inhibits L-type Ca2+ channels via redox modulation of key cysteine residues by mitochondrial reactive oxygen species. J Biol Chem 283(36):24412–24419PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Taillé C, El-Benna J, Lanone S, Boczkowski J, Motterlini R (2005) Mitochondrial respiratory chain and NAD(P)H oxidase are targets for the antiproliferative effect of carbon monoxide in human airway smooth muscle. J Biol Chem 280(27):25350–25360PubMedCrossRefGoogle Scholar
  17. 17.
    Costantini P, Chernyak BV, Petronilli V, Bernardi P (1996) Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites. J Biol Chem 271(12):6746–6751PubMedCrossRefGoogle Scholar
  18. 18.
    Costantini P, Belzacq AS, Vieira HL et al (2000) Oxidation of a critical thiol residue of the adenine nucleotide translocator enforces Bcl-2-independent permeability transition pore opening and apoptosis. Oncogene 19(2):307–314PubMedCrossRefGoogle Scholar
  19. 19.
    Vieira HLA, Boya P, Cohen I et al (2002) Cell permeable BH3-peptides overcome the cytoprotective effect of Bcl-2 and Bcl-X(L). Oncogene 21:1963–1977PubMedCrossRefGoogle Scholar
  20. 20.
    Kristian T, Fiskum G (2004) A fluorescence-based technique for screening compounds that protect against damage to brain mitochondria. Brain Res Brain Res Protoc 13(3):176–182PubMedCrossRefGoogle Scholar
  21. 21.
    Kristián T, Gertsch J, Bates TE, Siesjö BK (2000) Characteristics of the calcium-triggered mitochondrial permeability transition in nonsynaptic brain mitochondria: effect of cyclosporin A and ubiquinone O. J Neurochem 74(5):1999–2009PubMedCrossRefGoogle Scholar
  22. 22.
    Sims NR (1990) Rapid isolation of metabolically active mitochondria from rat brain and subregions using Percoll density gradient centrifugation. J Neurochem 55(2):698–707PubMedCrossRefGoogle Scholar
  23. 23.
    Motterlini R, Clark JE, Foresti R, Sarathchandra P, Mann BE, Green CJ (2002) Carbon monoxide-releasing molecules: characterization of biochemical and vascular activities. Circ Res 90(2):E17–E24PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Chronic Diseases Research Center (CEDOC), Faculdade de Ciências MédicasUniversidade Nova de LisboaLisboaPortugal
  2. 2.Instituto de Biologia Experimental e Tecnológica (IBET)OeirasPortugal
  3. 3.Instituto de Tecnologia Química e Biológica (ITQB)Universidade Nova de LisboaOeirasPortugal

Personalised recommendations