Detection and Differentiation Between Peroxynitrite and Hydroperoxides Using Mitochondria-Targeted Arylboronic Acid

  • Jacek Zielonka
  • Adam Sikora
  • Jan Adamus
  • B. Kalyanaraman
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1264)

Abstract

The development of boronic probes enabled reliable detection and quantitative analysis of hydrogen peroxide and peroxynitrite. The major product, in which boronate moiety of the probe is replaced by the hydroxyl group, is however common for both oxidants. Here, we describe how ortho-isomer of mitochondria-targeted phenylboronic acid can be used to detect and differentiate peroxynitrite-dependent and peroxynitrite-independent probe oxidation. This method highlights the detection and quantification of both the major, phenolic product and the minor, peroxynitrite-specific nitrated product of probe oxidation.

Key words

Hydrogen peroxide Peroxynitrite Mitochondria-targeted probes Boronic probes o-MitoPhB(OH)2 HPLC-MS 

References

  1. 1.
    Lippert AR, Van de Bittner GC, Chang CJ (2011) Boronate oxidation as a bioorthogonal reaction approach for studying the chemistry of hydrogen peroxide in living systems. Acc Chem Res 44:793–804PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Zielonka J, Sikora A, Hardy M, Joseph J, Dranka BP, Kalyanaraman B (2012) Boronate probes as diagnostic tools for real time monitoring of peroxynitrite and hydroperoxides. Chem Res Toxicol 25:1793–1799PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Cocheme HM, Quin C, McQuaker SJ, Cabreiro F, Logan A, Prime TA, Abakumova I, Patel JV, Fearnley IM, James AM, Porteous CM, Smith RA, Saeed S, Carre JE, Singer M, Gems D, Hartley RC, Partridge L, Murphy MP (2011) Measurement of H2O2 within living Drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrix. Cell Metab 13:340–350PubMedCrossRefGoogle Scholar
  4. 4.
    Cocheme HM, Logan A, Prime TA, Abakumova I, Quin C, McQuaker SJ, Patel JV, Fearnley IM, James AM, Porteous CM, Smith RA, Hartley RC, Partridge L, Murphy MP (2012) Using the mitochondria-targeted ratiometric mass spectrometry probe MitoB to measure H2O2 in living Drosophila. Nat Protoc 7:946–958PubMedCrossRefGoogle Scholar
  5. 5.
    Dickinson BC, Chang CJ (2008) A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells. J Am Chem Soc 130:9638–9639PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Dickinson BC, Lin VS, Chang CJ (2013) Preparation and use of MitoPY1 for imaging hydrogen peroxide in mitochondria of live cells. Nat Protoc 8:1249–1259PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Sikora A, Zielonka J, Lopez M, Joseph J, Kalyanaraman B (2009) Direct oxidation of boronates by peroxynitrite: mechanism and implications in fluorescence imaging of peroxynitrite. Free Radic Biol Med 47:1401–1407PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Sikora A, Zielonka J, Lopez M, Dybala-Defratyka A, Joseph J, Marcinek A, Kalyanaraman B (2011) Reaction between peroxynitrite and boronates: EPR spin-trapping, HPLC analyses, and quantum mechanical study of the free radical pathway. Chem Res Toxicol 24:687–697PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Kalyanaraman B (2011) Oxidative chemistry of fluorescent dyes: implications in the detection of reactive oxygen and nitrogen species. Biochem Soc Trans 39:1221–1225PubMedCrossRefGoogle Scholar
  10. 10.
    Wardman P (2007) Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic Biol Med 43:995–1022PubMedCrossRefGoogle Scholar
  11. 11.
    Zielonka J, Kalyanaraman B (2012) Methods of investigation of selected radical oxygen/nitrogen species in cell-free and cellular systems. In: Pantopoulos K, Schipper HM (eds) Principles of free radical biomedicine. Nova Science Publishers, New York, NYGoogle Scholar
  12. 12.
    Zielonka J, Sikora A, Joseph J, Kalyanaraman B (2010) Peroxynitrite is the major species formed from different flux ratios of co-generated nitric oxide and superoxide: direct reaction with boronate-based fluorescent probe. J Biol Chem 285:14210–14216PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Zielonka J, Zielonka M, Sikora A, Adamus J, Joseph J, Hardy M, Ouari O, Dranka BP, Kalyanaraman B (2012) Global profiling of reactive oxygen and nitrogen species in biological systems: high-throughput real-time analyses. J Biol Chem 287:2984–2995PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Sikora A, Zielonka J, Adamus J, Debski D, Dybala-Defratyka A, Michalowski B, Joseph J, Hartley RC, Murphy MP, Kalyanaraman B (2013) Reaction between peroxynitrite and triphenylphosphonium-substituted arylboronic acid isomers: identification of diagnostic marker products and biological implications. Chem Res Toxicol 26:856–867PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Zielonka J, Joseph J, Sikora A, Kalyanaraman B (2013) Real-time monitoring of reactive oxygen and nitrogen species in a multiwell plate using the diagnostic marker products of specific probes. Methods Enzymol 526:145–157PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jacek Zielonka
    • 1
    • 2
  • Adam Sikora
    • 2
  • Jan Adamus
    • 2
  • B. Kalyanaraman
    • 1
  1. 1.Department of Biophysics and Free Radical Research CenterMedical College of WisconsinMilwaukeeUSA
  2. 2.Institute of Applied Radiation ChemistryLodz University of TechnologyLodzPoland

Personalised recommendations