In Situ Dissection of RNA Functional Subunits by Domain-Specific Chromatin Isolation by RNA Purification (dChIRP)

  • Jeffrey J. Quinn
  • Howard Y. Chang
Part of the Methods in Molecular Biology book series (MIMB, volume 1262)


Here we describe domain-specific chromatin isolation by RNA purification (dChIRP), a technique for dissecting the functional domains of a target RNA in situ. For an RNA of interest, dChIRP can identify domain-level intramolecular and intermolecular RNA–RNA, RNA–protein, and RNA–DNA interactions and maps the RNA’s genomic binding sites with higher precision than domain-agnostic methods. We illustrate how this technique has been applied to the roX1 lncRNA to resolve its domain-level architecture, discover its protein- and chromatin-interacting domains, and map its occupancy on the X chromosome.

Key words

RNA Long noncoding RNA ChIRP Chromatin RNA-binding protein RNA domains 


  1. 1.
    Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166PubMedCrossRefGoogle Scholar
  2. 2.
    Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–1927PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature 482:339–346PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Ule J, Jensen K, Mele A, Darnell RB (2005) CLIP: a method for identifying protein-RNA interaction sites in living cells. Methods 37:376–386PubMedCrossRefGoogle Scholar
  5. 5.
    Helwak A, Kudla G, Dudnakova T, Tollervey D (2013) Mapping the human miRNA interactome by CLASH reveals frequent non-canonical binding. Cell 153:654–665PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Chu C, Zhong FL, Artandi SE, Chang HY (2011) Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell 44:1–12CrossRefGoogle Scholar
  7. 7.
    Chu C, Quinn JJ, Chang HY (2012) Chromatin isolation by RNA purification (ChIRP). J Vis Exp 61:e3912Google Scholar
  8. 8.
    Colak D, Zaninovic N, Cohen MS, Rosenwaks Z, Yang WY, Gerhardt J, Disney MD, Jaffrey SR (2014) Promoter-bound trinucleotide repeat mRNA drives epigenetic silencing in fragile X syndrome. Science 343:1002–1005PubMedCrossRefGoogle Scholar
  9. 9.
    Li Z, Chao T-C, Chang K-Y, Lin N, Patil VS, Shimizu C, Head SR, Burns JC, Rana TM (2013) The long noncoding RNA THRIL regulates TNFa expression through its interaction with hnRNPL. Proc Natl Acad Sci U S A 111:1002–1007PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Quinn JJ, Ilik IA, Qu K, Georgiev P, Chu C, Ahktar A, Chang HY (2014) Revealing long noncoding RNA architecture and functions using domain-specific chromatin isolation by RNA purification. Nat Biotechnol. doi: 10.1038/nbt.2943 Google Scholar
  11. 11.
    Conrad T, Akhtar A (2012) Dosage compensation in Drosophila melanogaster: epigenetic fine-tuning of chromosome-wide transcription. Nat Rev Genet 13:123–134PubMedCrossRefGoogle Scholar
  12. 12.
    Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28–36PubMedGoogle Scholar
  13. 13.
    Ilik IA, Quinn JJ, Georgiev P, Tavares-Cadete F, Maticzka D, Toscano S, Wan Y, Spitale RC, Luscombe N, Backofen R, Chang HY, Akhtar A (2013) Tandem stem-loops in roX RNAs act together to mediate X chromosome dosage compensation in Drosophila. Mol Cell 51:156–173PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Howard Hughes Medical Institute and Program in Epithelial BiologyStanford University School of MedicineStanfordUSA
  2. 2.Department of BioengineeringStanford University Schools of Medicine and EngineeringStanfordUSA

Personalised recommendations