Production of Cell Surface and Secreted Glycoproteins in Mammalian Cells

  • Elena Seiradake
  • Yuguang ZhaoEmail author
  • Weixian Lu
  • A. Radu AricescuEmail author
  • E. Yvonne JonesEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1261)


Mammalian protein expression systems are becoming increasingly popular for the production of eukaryotic secreted and cell surface proteins. Here we describe methods to produce recombinant proteins in adherent or suspension human embryonic kidney cell cultures, using transient transfection or stable cell lines. The protocols are easy to scale up and cost-efficient, making them suitable for protein crystallization projects and other applications that require high protein yields.

Key words

Protein expression HEK 293 cells Transient transfection Stable cell lines 


  1. 1.
    Zheng C, Han L, Yap C et al (2006) Progress and problems in the exploration of therapeutic targets. Drug Discov Today 11:412–420PubMedCrossRefGoogle Scholar
  2. 2.
    Grudnik P, Bange G, Sinning I (2009) Protein targeting by the signal recognition particle. Biol Chem 390:775–782PubMedCrossRefGoogle Scholar
  3. 3.
    Komekado H, Yamamoto H, Chiba T, Kikuchi A (2007) Glycosylation and palmitoylation of Wnt-3a are coupled to produce an active form of Wnt-3a. Genes Cells 12:521–534PubMedCrossRefGoogle Scholar
  4. 4.
    Braakman I, Bulleid NJ (2011) Protein folding and modification in the mammalian endoplasmic reticulum. Annu Rev Biochem 80:71–99PubMedCrossRefGoogle Scholar
  5. 5.
    Aebi M (2013) N-linked protein glycosylation in the ER. Biochim Biophys Acta 1833:2430–2437PubMedCrossRefGoogle Scholar
  6. 6.
    Ellgaard L (2004) Catalysis of disulphide bond formation in the endoplasmic reticulum. Biochem Soc Trans 32:663–667PubMedCrossRefGoogle Scholar
  7. 7.
    Contreras-Gomez A, Sanchez-Miron A, Garcia-Camacho F et al (2014) Protein production using the baculovirus-insect cell expression system. Biotechnol Prog 30:1–18PubMedCrossRefGoogle Scholar
  8. 8.
    Aricescu AR, Lu W, Jones EY (2006) A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr D Biol Crystallogr 62:1243–1250PubMedCrossRefGoogle Scholar
  9. 9.
    Hacker DL, Kiseljak D, Rajendra Y et al (2013) Polyethyleneimine-based transient gene expression processes for suspension-adapted HEK-293E and CHO-DG44 cells. Protein Expr Purif 92:67–76PubMedCrossRefGoogle Scholar
  10. 10.
    Chang VT, Crispin M, Aricescu AR et al (2007) Glycoprotein structural genomics: solving the glycosylation problem. Structure 15:267–273PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Chaudhary S, Pak JE, Gruswitz F et al (2012) Overexpressing human membrane proteins in stably transfected and clonal human embryonic kidney 293S cells. Nat Protoc 7:453–466PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Andrell J, Tate CG (2013) Overexpression of membrane proteins in mammalian cells for structural studies. Mol Membr Biol 30:52–63PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Aricescu AR, Owens RJ (2013) Expression of recombinant glycoproteins in mammalian cells: towards an integrative approach to structural biology. Curr Opin Struct Biol 23:345–356PubMedCrossRefGoogle Scholar
  14. 14.
    Standfuss J, Edwards PC, D’Antona A et al (2011) The structural basis of agonist-induced activation in constitutively active rhodopsin. Nature 471:656–660PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Standfuss J, Xie G, Edwards PC et al (2007) Crystal structure of a thermally stable rhodopsin mutant. J Mol Biol 372:1179–1188PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Gruswitz F, Chaudhary S, Ho JD et al (2010) Function of human Rh based on structure of RhCG at 2.1 A. Proc Natl Acad Sci U S A 107:9638–9643PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Deupi X, Edwards P, Singhal A et al (2012) Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II. Proc Natl Acad Sci U S A 109:119–124PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Zhao Y, Bishop B, Clay JE et al (2011) Automation of large scale transient protein expression in mammalian cells. J Struct Biol 175:209–215PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Reeves PJ, Callewaert N, Contreras R, Khorana HG (2002) Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc Natl Acad Sci U S A 99:13419–13424PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Chen CM, Krohn J, Bhattacharya S, Davies B (2011) A comparison of exogenous promoter activity at the ROSA26 locus using a PhiC31 integrase mediated cassette exchange approach in mouse ES cells. PLoS One 6:e23376PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Berrow NS, Alderton D, Sainsbury S et al (2007) A versatile ligation-independent cloning method suitable for high-throughput expression screening applications. Nucleic Acids Res 35:e45PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Zhao Y, Malinauskas T, Harlos K, Jones EY (2014) Structural insights into the inhibition of Wnt signaling by cancer antigen 5T4/Wnt-activated inhibitory factor 1. Structure 22:612–620PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Zhao Y, Ren J, Padilla-Parra S et al (2014) LIMP-2, the lysosome-sorting subunit of β-glucocerebrosidase, is targeted by the mannose 6-phosphate receptor. Nat Commun 5:4321PubMedCentralPubMedGoogle Scholar
  24. 24.
    Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795PubMedCrossRefGoogle Scholar
  25. 25.
    Shi J, Blundell TL, Mizuguchi K (2001) FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J Mol Biol 310:243–257PubMedCrossRefGoogle Scholar
  26. 26.
    Soding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Grueninger-Leitch F, D’Arcy A, D’Arcy B, Chene C (1996) Deglycosylation of proteins for crystallization using recombinant fusion protein glycosidases. Protein Sci 5:2617–2622PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Wong JP, Reboul E, Molday RS, Kast J (2009) A carboxy-terminal affinity tag for the purification and mass spectrometric characterization of integral membrane proteins. J Proteome Res 8:2388–2396PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Einhaue A, Jungbauer A (2001) The FLAG peptide, a versatile fusion tag for the purification of recombinant proteins. J Biochem Biophys Methods 49:455–465CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.The Division of Structural BiologyThe Henry Wellcome Building for Genomic MedicineOxfordUK

Personalised recommendations