GFP-Based Expression Screening of Membrane Proteins in Insect Cells Using the Baculovirus System

  • Nien-Jen HuEmail author
  • Heather Rada
  • Nahid Rahman
  • Joanne E. Nettleship
  • Louise Bird
  • So Iwata
  • David Drew
  • Alexander D. Cameron
  • Raymond J. Owens
Part of the Methods in Molecular Biology book series (MIMB, volume 1261)


A key step in the production of recombinant membrane proteins for structural studies is the optimization of protein yield and quality. One commonly used approach is to fuse the protein to green fluorescent protein (GFP), enabling expression to be tracked without the need to purify the protein. Combining fusion to green fluorescent protein with the baculovirus expression system provides a useful platform for both screening and production of eukaryotic membrane proteins. In this chapter we describe our protocol for the expression screening of membrane proteins in insect cells using fusion to GFP as a reporter. We use both SDS-PAGE with in-gel fluorescence imaging and fluorescence-detection size-exclusion chromatography (FSEC) to screen for expression.

Key words

Membrane proteins Baculovirus Insect cells Green fluorescent protein Fluorescence-detection size-exclusion chromatography 



The OPPF-UK is funded by the Medical Research Council, UK (grant MR/K018779/1). We thank Professor Ian Jones (University of Reading) for providing the baculovirus bacmid.


  1. 1.
    Leonetti MD, Yuan P, Hsiung Y, Mackinnon R (2012) Functional and structural analysis of the human SLO3 pH- and voltage-gated K + channel. Proc Natl Acad Sci U S A 109:19274–19279PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Yuan P, Leonetti MD, Pico AR, Hsiung Y, MacKinnon R (2010) Structure of the human BK channel Ca2+-activation apparatus at 3.0 A resolution. Science 329:182–186PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Maeda S, Nakagawa S, Suga M et al (2009) Structure of the connexin 26 gap junction channel at 3.5 A resolution. Nature 458:597–602PubMedCrossRefGoogle Scholar
  4. 4.
    Granier S, Manglik A, Kruse AC et al (2012) Structure of the delta-opioid receptor bound to naltrindole. Nature 485:400–404PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Hanson MA, Roth CB, Jo E et al (2012) Crystal structure of a lipid G protein-coupled receptor. Science 335:851–855PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Siu FY, He M, de Graaf C, Han GW et al (2013) Structure of the human glucagon class B G-protein-coupled receptor. Nature 499:444–449PubMedCrossRefGoogle Scholar
  7. 7.
    Tan Q, Zhu Y, Li J et al (2013) Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science 341:1387–1390PubMedCrossRefGoogle Scholar
  8. 8.
    Wacker D, Wang C, Katritch V et al (2013) Structural features for functional selectivity at serotonin receptors. Science 340:615–619PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Wang C, Jiang Y, Ma J et al (2013) Structural basis for molecular recognition at serotonin receptors. Science 340:610–614PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Wu B, Chien EY, Mol CD et al (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330:1066–1071PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Zhang C, Srinivasan Y, Arlow DH et al (2012) High-resolution crystal structure of human protease-activated receptor 1. Nature 492:387–392PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Shintre CA, Pike AC, Li Q et al (2013) Structures of ABCB10, a human ATP-binding cassette transporter in apo- and nucleotide-bound states. Proc Natl Acad Sci U S A 110:9710–9715PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Cherezov V, Rosenbaum DM, Hanson MA et al (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Rosenbaum DM, Cherezov V, Hanson MA et al (2007) GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318:1266–1273PubMedCrossRefGoogle Scholar
  15. 15.
    Hanson MA, Brooun A, Baker KA et al (2007) Profiling of membrane protein variants in a baculovirus system by coupling cell-surface detection with small-scale parallel expression. Protein Expr Purif 56:85–92PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Chun E, Thompson AA, Liu W et al (2012) Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure 20:967–976PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Drew D, Lerch M, Kunji E, Slotboom DJ, de Gier JW (2006) Optimization of membrane protein overexpression and purification using GFP fusions. Nat Methods 3:303–313PubMedCrossRefGoogle Scholar
  18. 18.
    Newstead S, Kim H, von Heijne G, Iwata S, Drew D (2007) High-throughput fluorescent-based optimization of eukaryotic membrane protein overexpression and purification in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 104:13936–13941PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Kawate T, Gouaux E (2006) Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14:673–681PubMedCrossRefGoogle Scholar
  20. 20.
    Kawate T, Michel JC, Birdsong WT, Gouaux E (2009) Crystal structure of the ATP-gated P2X(4) ion channel in the closed state. Nature 460:592–598PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Quigley A, Dong YY, Pike AC et al (2013) The structural basis of ZMPSTE24-dependent laminopathies. Science 339:1604–1607PubMedCrossRefGoogle Scholar
  22. 22.
    Zhao Y, Chapman DA, Jones IM (2003) Improving baculovirus recombination. Nucleic Acids Res 31:E6-6PubMedCrossRefGoogle Scholar
  23. 23.
    Bird LE, Rada H, Flanagan J et al (2014) Application of In-Fusion™ cloning for the parallel construction of E. coli expression vectors. Methods Mol Biol 1116:209–234PubMedCrossRefGoogle Scholar
  24. 24.
    Hitchman RB, Possee RD, Siaterli E et al (2010) Improved expression of secreted and membrane-targeted proteins in insect cells. Biotechnol Appl Biochem 56:85–93PubMedCrossRefGoogle Scholar
  25. 25.
    Hitchman RB, Possee RD, Crombie AT et al (2010) Genetic modification of a baculovirus vector for increased expression in insect cells. Cell Biol Toxicol 26:57–68PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Nien-Jen Hu
    • 2
    Email author
  • Heather Rada
    • 3
  • Nahid Rahman
    • 3
  • Joanne E. Nettleship
    • 3
  • Louise Bird
    • 3
  • So Iwata
    • 1
  • David Drew
    • 4
  • Alexander D. Cameron
    • 5
  • Raymond J. Owens
    • 3
  1. 1.Division of Molecular BiosciencesImperial College LondonLondonUK
  2. 2.Institute of BiochemistryNational Chung Hsing UniversityTaichungTaiwan
  3. 3.Oxford Protein Production Facility-UK, Research Complex at Harwell, R92 Rutherford Appleton LaboratoriesHarwell OxfordOxfordUK
  4. 4.Research Complex at HarwellDepartment of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
  5. 5.School of Life SciencesUniversity of WarwickCoventryUK

Personalised recommendations