General Introduction: Recombinant Protein Production and Purification of Insoluble Proteins

  • Neus Ferrer-Miralles
  • Paolo Saccardo
  • José Luis Corchero
  • Zhikun Xu
  • Elena García-Fruitós
Part of the Methods in Molecular Biology book series (MIMB, volume 1258)


Proteins are synthesized in heterologous systems because of the impossibility to obtain satisfactory yields from natural sources. The production of soluble and functional recombinant proteins is among the main goals in the biotechnological field. In this context, it is important to point out that under stress conditions, protein folding machinery is saturated and this promotes protein misfolding and, consequently, protein aggregation. Thus, the selection of the optimal expression organism and the most appropriate growth conditions to minimize the formation of insoluble proteins should be done according to the protein characteristics and downstream requirements.

Escherichia coli is the most popular recombinant protein expression system despite the great development achieved so far by eukaryotic expression systems. Besides, other prokaryotic expression systems, such as lactic acid bacteria and psychrophilic bacteria, are gaining interest in this field. However, it is worth mentioning that prokaryotic expression system poses, in many cases, severe restrictions for a successful heterologous protein production. Thus, eukaryotic systems such as mammalian cells, insect cells, yeast, filamentous fungus, and microalgae are an interesting alternative for the production of these difficult-to-express proteins.

Key words

Recombinant proteins Protein expression Protein purification Aggregation Solubility Heterologous system Insoluble proteins 



The authors acknowledge the financial support granted to E.G.F. from Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria—MINECO (RTA2012-00028-C02-02) and Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina. Z.X. acknowledges financial support from China Scholarship Council. PS has received a predoctoral fellowship from Instituto de Salud Carlos III. The authors are also indebted to the Protein Production Platform (CIBER-BBN—UAB) for helpful technical assistance (


  1. 1.
    Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230PubMedGoogle Scholar
  2. 2.
    Mogk A, Mayer MP, Deuerling E (2002) Mechanisms of protein folding: molecular chaperones and their application in biotechnology. Chembiochem 3:807–814PubMedGoogle Scholar
  3. 3.
    Saibil H (2013) Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol 14:630–642PubMedGoogle Scholar
  4. 4.
    Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332PubMedGoogle Scholar
  5. 5.
    Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125:443–451PubMedGoogle Scholar
  6. 6.
    Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10:524–530PubMedGoogle Scholar
  7. 7.
    Wetzel R (1994) Mutations and off-pathway aggregation of proteins. Trends Biotechnol 12:193–198PubMedGoogle Scholar
  8. 8.
    Fink AL (1998) Protein aggregation: folding aggregates, inclusion bodies and amyloid. Fold Des 3:R9–23PubMedGoogle Scholar
  9. 9.
    Speed MA, Wang DI, King J (1996) Specific aggregation of partially folded polypeptide chains: the molecular basis of inclusion body composition. Nat Biotechnol 14:1283–1287PubMedGoogle Scholar
  10. 10.
    Garcia-Mata R, Bebok Z, Sorscher EJ et al (1999) Characterization and dynamics of aggresome formation by a cytosolic GFP-chimera. J Cell Biol 146:1239–1254PubMedCentralPubMedGoogle Scholar
  11. 11.
    Wigley WC, Fabunmi RP, Lee MG et al (1999) Dynamic association of proteasomal machinery with the centrosome. J Cell Biol 145:481–490PubMedGoogle Scholar
  12. 12.
    Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221:3–12PubMedCentralPubMedGoogle Scholar
  13. 13.
    Francis DM, Page R (2010) Strategies to optimize protein expression in E. coli. Curr Protoc Protein Sci. Chapter 5:Unit-29Google Scholar
  14. 14.
    Sorensen HP, Mortensen KK (2005) Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb Cell Fact 4:1PubMedCentralPubMedGoogle Scholar
  15. 15.
    Wagner S, Klepsch MM, Schlegel S et al (2008) Tuning Escherichia coli for membrane protein overexpression. Proc Natl Acad Sci U S A 105:14371–14376PubMedCentralPubMedGoogle Scholar
  16. 16.
    Nannenga BL, Baneyx F (2011) Reprogramming chaperone pathways to improve membrane protein expression in Escherichia coli. Protein Sci 20:1411–1420PubMedCentralPubMedGoogle Scholar
  17. 17.
    Freigassner M, Pichler H, Glieder A (2009) Tuning microbial hosts for membrane protein production. Microb Cell Fact 8:69PubMedCentralPubMedGoogle Scholar
  18. 18.
    Ferrer-Miralles N, Domingo-Espin J, Corchero JL et al (2009) Microbial factories for recombinant pharmaceuticals. Microb Cell Fact 8:17PubMedCentralPubMedGoogle Scholar
  19. 19.
    Gopal GJ, Kumar A (2013) Strategies for the production of recombinant protein in Escherichia coli. Protein J 32:419–425PubMedGoogle Scholar
  20. 20.
    Schumann W, Ferreira LCS (2004) Production of recombinant proteins in Escherichia coli. Genet Mol Biol 27:442–453Google Scholar
  21. 21.
    Care S, Bignon C, Pelissier M et al (2008) The translation of recombinant proteins in E-coli can be improved by in silico generating and screening random libraries of a 70/96 mRNA region with respect to the translation initiation codon. Nucleic Acids Res 36:e6PubMedCentralPubMedGoogle Scholar
  22. 22.
    Graslund S, Nordlund P, Weigelt J et al (2008) Protein production and purification. Nat Methods 5:135–146PubMedGoogle Scholar
  23. 23.
    Hatfield G, Roth DA (2007) Optimizing scaleup yield for protein production: Computationally Optimized DNA Assembly (CODA) and Translation Engineering (TM). Biotechnol Annu Rev 13:27–42PubMedGoogle Scholar
  24. 24.
    Menzella HG (2011) Comparison of two codon optimization strategies to enhance recombinant protein production in Escherichia coli. Microb Cell Fact 10:15PubMedCentralPubMedGoogle Scholar
  25. 25.
    Hortsch R, Weuster-Botz D (2011) Growth and recombinant protein expression with Escherichia coli in different batch cultivation media. Appl Microbiol Biotechnol 90:69–76PubMedGoogle Scholar
  26. 26.
    Sahdev S, Khattar SK, Saini KS (2008) Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem 307:249–264PubMedGoogle Scholar
  27. 27.
    Apiyo D, Wittung-Stafshede P (2002) Presence of the cofactor speeds up folding of desulfovibrio desulfuricans flavodoxin. Protein Sci 11:1129–1135PubMedCentralPubMedGoogle Scholar
  28. 28.
    Jenzsch M, Gnoth S, Kleinschmidt M et al (2007) Improving the batch-to-batch reproducibility of microbial cultures during recombinant protein production by regulation of the total carbon dioxide production. J Biotechnol 128:858–867PubMedGoogle Scholar
  29. 29.
    Song JM, An YJ, Kang MH et al (2012) Cultivation at 6–10 °C is an effective strategy to overcome the insolubility of recombinant proteins in Escherichia coli. Protein Expr Purif 82:297–301PubMedGoogle Scholar
  30. 30.
    Vaks L, Benhar I (2014) Production of stabilized scFv antibody fragments in the E. coli bacterial cytoplasm. Methods Mol Biol 34:171–184Google Scholar
  31. 31.
    Mollania N, Khajeh K, Ranjbar B et al (2013) An efficient in vitro refolding of recombinant bacterial laccase in Escherichia coli. Enzyme Microb Technol 52:325–330PubMedGoogle Scholar
  32. 32.
    Ramakrishnan B, Qasba PK (2013) In vitro folding of beta-1,4galactosyltransferase and polypeptide-alpha-N-acetylgalactosaminyltransferase from the inclusion bodies. Methods Mol Biol 1022:321–333 (Clifton, NJ)PubMedGoogle Scholar
  33. 33.
    Sans C, Garcia-Fruitos E, Ferraz RM et al (2012) Inclusion bodies of fuculose-1-phosphate aldolase as stable and reusable biocatalysts. Biotechnol Prog 28:421–427PubMedGoogle Scholar
  34. 34.
    Garcia-Fruitos E, Aris A, Villaverde A (2007) Localization of functional polypeptides in bacterial inclusion bodies. Appl Environ Microbiol 73:289–294PubMedCentralPubMedGoogle Scholar
  35. 35.
    Garcia-Fruitos E, Gonzalez-Montalban N, Morell M et al (2005) Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins. Microb Cell Fact 4:27PubMedCentralPubMedGoogle Scholar
  36. 36.
    Nahalka J, Mislovicova D, Kavcova H (2009) Targeting lectin activity into inclusion bodies for the characterisation of glycoproteins. Mol Biosyst 5:819–821PubMedGoogle Scholar
  37. 37.
    Nahalka J, Patoprsty V (2009) Enzymatic synthesis of sialylation substrates powered by a novel polyphosphate kinase (PPK3). Org Biomol Chem 7:1778–1780PubMedGoogle Scholar
  38. 38.
    Nahalka J (2008) Physiological aggregation of maltodextrin phosphorylase from Pyrococcus furiosus and its application in a process of batch starch degradation to alpha-D-glucose-1-phosphate. J Ind Microbiol Biotechnol 35:219–223PubMedGoogle Scholar
  39. 39.
    Peternel S, Komel R (2010) Isolation of biologically active nanomaterial (inclusion bodies) from bacterial cells. Microb Cell Fact 9:66PubMedCentralPubMedGoogle Scholar
  40. 40.
    Gonzalez-Montalban N, Garcia-Fruitos E, Villaverde A (2007) Recombinant protein solubility – does more mean better? Nat Biotechnol 25:718–720PubMedGoogle Scholar
  41. 41.
    Peternel S, Grdadolnik J, Gaberc-Porekar V et al (2008) Engineering inclusion bodies for non denaturing extraction of functional proteins. Microb Cell Fact 7:34PubMedCentralPubMedGoogle Scholar
  42. 42.
    Diez-Gil C, Krabbenborg S, Garcia-Fruitos E et al (2010) The nanoscale properties of bacterial inclusion bodies and their effect on mammalian cell proliferation. Biomaterials 31:5805–5812PubMedGoogle Scholar
  43. 43.
    Liovic M, Ozir M, Zavec AB et al (2012) Inclusion bodies as potential vehicles for recombinant protein delivery into epithelial cells. Microb Cell Fact 11:67PubMedCentralPubMedGoogle Scholar
  44. 44.
    Cano-Garrido O, Rodriguez-Carmona E, Diez-Gil C et al (2013) Supramolecular organization of protein-releasing functional amyloids solved in bacterial inclusion bodies. Acta Biomater 9:6134–6142PubMedGoogle Scholar
  45. 45.
    Villaverde A, Garcia-Fruitos E, Rinas U et al (2012) Packaging protein drugs as bacterial inclusion bodies for therapeutic applications. Microb Cell Fact 11:76PubMedCentralPubMedGoogle Scholar
  46. 46.
    Vazquez E, Corchero JL, Burgueno JF et al (2012) Functional inclusion bodies produced in bacteria as naturally occurring nanopills for advanced cell therapies. Adv Materials 24:1742–1747Google Scholar
  47. 47.
    Martinez-Alonso M, Garcia-Fruitos E, Villaverde A (2008) Yield, solubility and conformational quality of soluble proteins are not simultaneously favored in recombinant Escherichia coli. Biotechnol Bioeng 101:1353–1358PubMedGoogle Scholar
  48. 48.
    Garcia-Fruitos E, Martinez-Alonso M, Gonzalez-Montalban N et al (2007) Divergent genetic control of protein solubility and conformational quality in Escherichia coli. J Mol Biol 374:195–205PubMedGoogle Scholar
  49. 49.
    Martinez-Alonso M, Gonzalez-Montalban N, Garcia-Fruitos E et al (2008) The functional quality of soluble recombinant polypeptides produced in Escherichia coli is defined by a wide conformational spectrum. Appl Environ Microbiol 74:7431–7433PubMedCentralPubMedGoogle Scholar
  50. 50.
    Garcia-Fruitos E (2012) Lactic acid bacteria: a promising alternative for recombinant protein production. Microb Cell Fact 11:157PubMedCentralPubMedGoogle Scholar
  51. 51.
    Zweers JC, Barak I, Becher D et al (2008) Towards the development of Bacillus subtilis as a cell factory for membrane proteins and protein complexes. Microb Cell Fact 7:10PubMedCentralPubMedGoogle Scholar
  52. 52.
    Westers L, Westers H, Quax WJ (2004) Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim Biophys Acta 1694:299–310PubMedGoogle Scholar
  53. 53.
    Petsch D, Anspach FB (2000) Endotoxin removal from protein solutions. J Biotechnol 76:97–119PubMedGoogle Scholar
  54. 54.
    Williams SF, Martin DP, Horowitz DM et al (1999) PHA applications: addressing the price performance issue: I. Tissue engineering. Int J Biol Macromol 25:111–121PubMedGoogle Scholar
  55. 55.
    Parlane NA, Grage K, Lee JW et al (2011) Production of a particulate hepatitis C vaccine candidate by an engineered Lactococcus lactis strain. Appl Environ Microbiol 77:8516–8522PubMedCentralPubMedGoogle Scholar
  56. 56.
    Carrio M, Gonzalez-Montalban N, Vera A et al (2005) Amyloid-like properties of bacterial inclusion bodies. J Mol Biol 347:1025–1037PubMedGoogle Scholar
  57. 57.
    Birolo L, Tutino ML, Fontanella B et al (2000) Aspartate aminotransferase from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC 125. Cloning, expression, properties, and molecular modelling. Eur J Biochem 267:2790–2802PubMedGoogle Scholar
  58. 58.
    Tutino ML, Duilio A, Parrilli R et al (2001) A novel replication element from an Antarctic plasmid as a tool for the expression of proteins at low temperature. Extremophiles 5:257–264PubMedGoogle Scholar
  59. 59.
    Cusano AM, Parrilli E, Marino G et al (2006) A novel genetic system for recombinant protein secretion in the Antarctic Pseudoalteromonas haloplanktis TAC125. Microb Cell Fact 5:40PubMedCentralPubMedGoogle Scholar
  60. 60.
    Parrilli E, Giuliani M, Marino G et al (2010) Influence of production process design on inclusion bodies protein: the case of an Antarctic flavohemoglobin. Microb Cell Fact 9:19PubMedCentralPubMedGoogle Scholar
  61. 61.
    Duilio A, Madonna S, Tutino ML et al (2004) Promoters from a cold-adapted bacterium: definition of a consensus motif and molecular characterization of UP regulative elements. Extremophiles 8:125–132PubMedGoogle Scholar
  62. 62.
    Tutino ML, Parrilli E, Giaquinto L et al (2002) Secretion of alpha-amylase from Pseudoalteromonas haloplanktis TAB23: two different pathways in different hosts. J Bacteriol 184:5814–5817PubMedCentralPubMedGoogle Scholar
  63. 63.
    Papa R, Rippa V, Sannia G et al (2007) An effective cold inducible expression system developed in Pseudoalteromonas haloplanktis TAC125. J Biotechnol 127:199–210PubMedGoogle Scholar
  64. 64.
    Parrilli E, De VD, Cirulli C et al (2008) Development of an improved Pseudoalteromonas haloplanktis TAC125 strain for recombinant protein secretion at low temperature. Microb Cell Fact 7:2PubMedCentralPubMedGoogle Scholar
  65. 65.
    Dragosits M, Frascotti G, Bernard-Granger L et al (2011) Influence of growth temperature on the production of antibody Fab fragments in different microbes: a host comparative analysis. Biotechnol Prog 27:38–46PubMedGoogle Scholar
  66. 66.
    Giuliani M, Parrilli E, Ferrer P et al (2011) Process optimization for recombinant protein production in the psychrophilic bacterium Pseudoalteromonas haloplanktis. Process Biochem 46:953–959Google Scholar
  67. 67.
    Vigentini I, Merico A, Tutino ML et al (2006) Optimization of recombinant human nerve growth factor production in the psychrophilic Pseudoalteromonas haloplanktis. J Biotechnol 127:141–150PubMedGoogle Scholar
  68. 68.
    Rattenholl A, Lilie H, Grossmann A et al (2001) The pro-sequence facilitates folding of human nerve growth factor from Escherichia coli inclusion bodies. Eur J Biochem 268:3296–3303PubMedGoogle Scholar
  69. 69.
    Piette F, D’Amico S, Struvay C et al (2010) Proteomics of life at low temperatures: trigger factor is the primary chaperone in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Mol Microbiol 76:120–132PubMedGoogle Scholar
  70. 70.
    Wilmes B, Hartung A, Lalk M et al (2010) Fed-batch process for the psychrotolerant marine bacterium Pseudoalteromonas haloplanktis. Microb Cell Fact 9:72PubMedCentralPubMedGoogle Scholar
  71. 71.
    Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398PubMedGoogle Scholar
  72. 72.
    Figueroa B Jr, Ailor E, Osborne D et al (2007) Enhanced cell culture performance using inducible anti-apoptotic genes E1B-19K and Aven in the production of a monoclonal antibody with Chinese hamster ovary cells. Biotechnol Bioeng 97:877–892PubMedGoogle Scholar
  73. 73.
    Geisse S (2009) Reflections on more than 10 years of TGE approaches. Protein Expr Purif 64:99–107PubMedGoogle Scholar
  74. 74.
    Derouazi M, Girard P, Van TF et al (2004) Serum-free large-scale transient transfection of CHO cells. Biotechnol Bioeng 87:537–545PubMedGoogle Scholar
  75. 75.
    Rosser MP, Xia W, Hartsell S et al (2005) Transient transfection of CHO-K1-S using serum-free medium in suspension: a rapid mammalian protein expression system. Protein Expr Purif 40:237–243PubMedGoogle Scholar
  76. 76.
    Baldi L, Hacker DL, Adam M et al (2007) Recombinant protein production by large-scale transient gene expression in mammalian cells: state of the art and future perspectives. Biotechnol Lett 29:677–684PubMedGoogle Scholar
  77. 77.
    Durocher Y, Perret S, Kamen A (2002) High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Res 30:E9PubMedCentralPubMedGoogle Scholar
  78. 78.
    Girard P, Derouazi M, Baumgartner G et al (2002) 100-liter transient transfection. Cytotechnology 38:15–21PubMedCentralPubMedGoogle Scholar
  79. 79.
    Johnston JA, Ward CL, Kopito RR (1998) Aggresomes: a cellular response to misfolded proteins. J Cell Biol 143:1883–1898PubMedCentralPubMedGoogle Scholar
  80. 80.
    Kopito RR, Sitia R (2000) Aggresomes and Russell bodies. Symptoms of cellular indigestion? EMBO Rep 1:225–231PubMedCentralPubMedGoogle Scholar
  81. 81.
    Zaarur N, Meriin AB, Gabai VL et al (2008) Triggering aggresome formation. Dissecting aggresome-targeting and aggregation signals in synphilin 1. J Biol Chem 283:27575–27584PubMedGoogle Scholar
  82. 82.
    Garcia-Mata R, Gao YS, Sztul E (2002) Hassles with taking out the garbage: aggravating aggresomes. Traffic 3:388–396PubMedGoogle Scholar
  83. 83.
    Shimohata T, Sato A, Burke JR et al (2002) Expanded polyglutamine stretches form an ‘aggresome’. Neurosci Lett 323:215–218PubMedGoogle Scholar
  84. 84.
    Kim MC, Song J, Min O et al (2013) Virus-like particles containing multiple M2 extracellular domains confer improved cross-protection against various subtypes of influenza virus. Mol Ther 21:485–492PubMedCentralPubMedGoogle Scholar
  85. 85.
    Loureiro S, Ren J, Phapugrangkul P et al (2011) Adjuvant-free immunization with hemagglutinin-Fc fusion proteins as an approach to influenza vaccines. J Virol 85:3010–3014PubMedCentralPubMedGoogle Scholar
  86. 86.
    Huetter J, Roedig JV, Hoeper D et al (2013) Toward animal cell culture-based influenza vaccine design: viral hemagglutinin N-glycosylation markedly impacts immunogenicity. J Immunol 190:220–230Google Scholar
  87. 87.
    De Groot AS, Scott DW (2007) Immunogenicity of protein therapeutics. Trends Immunol 28:482–490PubMedGoogle Scholar
  88. 88.
    Legardinier S, Duoner-Cerutti M, Devauchelle G et al (2005) Biological activities of recombinant equine luteinizing hormone/chorionic gonadotropin (eLH/CG) expressed in Sf9 and Mimic insect cell lines. J Mol Endocrinol 34:47–60PubMedGoogle Scholar
  89. 89.
    Radner S, Celie PH, Fuchs K et al (2012) Transient transfection coupled to baculovirus infection for rapid protein expression screening in insect cells. J Struct Biol 179:46–55PubMedGoogle Scholar
  90. 90.
    Heath CM, Windsor M, Wileman T (2001) Aggresomes resemble sites specialized for virus assembly. J Cell Biol 153:449–455PubMedCentralPubMedGoogle Scholar
  91. 91.
    Bernard A, Payton M, Radford KR (2001) Protein expression in the baculovirus system. Curr Protoc Neurosci. Chapter 4:Unit 4.19Google Scholar
  92. 92.
    Martinez-Alonso M, Toledo-Rubio V, Noad R et al (2009) Rehosting of bacterial chaperones for high-quality protein production. Appl Environ Microbiol 75:7850–7854PubMedCentralPubMedGoogle Scholar
  93. 93.
    Ardiani A, Higgins JP, Hodge JW (2010) Vaccines based on whole recombinant Saccharomyces cerevisiae cells. FEMS Yeast Res 10:1060–1069PubMedGoogle Scholar
  94. 94.
    Evans L, Hughes M, Waters J, et al. (2010) The production, characterisation and enhanced pharmacokinetics of scFv-albumin fusions expressed in Saccharomyces cerevisiae. Protein Expr Purif. 73(2): 113–124PubMedGoogle Scholar
  95. 95.
    Kim BJ, Zhou J, Martin B, et al. (2010) Transferrin fusion technology: a novel approach to prolonging biological half-life of insulinotropic peptides. J Pharmacol Exp Ther. 334(3): 682–692PubMedCentralPubMedGoogle Scholar
  96. 96.
    Chiba Y, Akeboshi H (2009) Glycan engineering and production of ‘humanized’ glycoprotein in yeast cells. Biol Pharm Bull 32:786–795PubMedGoogle Scholar
  97. 97.
    Gerngross TU (2004) Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. Nat Biotechnol 22:1409–1414PubMedGoogle Scholar
  98. 98.
    Nakayama K, Nagasu T, Shimma Y et al (1992) OCH1 encodes a novel membrane bound mannosyltransferase: outer chain elongation of asparagine-linked oligosaccharides. EMBO J 11:2511–2519PubMedCentralPubMedGoogle Scholar
  99. 99.
    Gasser B, Saloheimo M, Rinas U et al (2008) Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview. Microb Cell Fact 7:11PubMedCentralPubMedGoogle Scholar
  100. 100.
    Porro D, Sauer M, Branduardi P et al (2005) Recombinant protein production in yeasts. Mol Biotechnol 31:245–259PubMedGoogle Scholar
  101. 101.
    Porro D, Branduardi P (2009) Yeast cell factory: fishing for the best one or engineering it? Microb Cell Fact 8:51PubMedCentralPubMedGoogle Scholar
  102. 102.
    Ciplys E, Samuel D, Juozapaitis M et al (2011) Overexpression of human virus surface glycoprotein precursors induces cytosolic unfolded protein response in Saccharomyces cerevisiae. Microb Cell Fact 10:37PubMedCentralPubMedGoogle Scholar
  103. 103.
    Boer E, Steinborn G, Kunze G et al (2007) Yeast expression platforms. Appl Microbiol Biotechnol 77:513–523PubMedGoogle Scholar
  104. 104.
    Cregg JM, Cereghino JL, Shi J et al (2000) Recombinant protein expression in Pichia pastoris. Mol Biotechnol 16:23–52PubMedGoogle Scholar
  105. 105.
    Li P, Anumanthan A, Gao XG et al (2007) Expression of recombinant proteins in Pichia pastoris. Appl Biochem Biotechnol 142:105–124PubMedGoogle Scholar
  106. 106.
    Shekhar C (2008) Pichia power: India’s biotech industry puts unconventional yeast to work. Chem Biol 15:201–202PubMedGoogle Scholar
  107. 107.
    Rabert C, Weinacker D, Pessoa A et al (2013) Recombinants proteins for industrial uses: utilization of Pichia pastoris expression system. Braz J Microbiol 44:351–356PubMedCentralPubMedGoogle Scholar
  108. 108.
    Gasser B, Prielhofer R, Marx H et al (2009) Pichia pastoris: protein production host and model organism for biomedical research. Future Microbiol 8:191–208Google Scholar
  109. 109.
    Bollok M, Resina D, Valero F et al (2009) Recent patents on the Pichia pastoris expression system: expanding the toolbox for recombinant protein production. Recent Pat Biotechnol 3:192–201PubMedGoogle Scholar
  110. 110.
    Graf A, Gasser B, Dragosits M et al (2008) Novel insights into the unfolded protein response using Pichia pastoris specific DNA microarrays. BMC Genomics 9:390PubMedCentralPubMedGoogle Scholar
  111. 111.
    Cherry JR, Fidantsef AL (2003) Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14:438–443PubMedGoogle Scholar
  112. 112.
    Harkki A, Uusitalo J, Bailey M et al (1989) A novel fungal expression system – secretion of active calf chymosin from the filamentous fungus Trichoderma reesei. Nat Biotechnol 7:596–603Google Scholar
  113. 113.
    Stals I, Sandra K, Devreese B et al (2004) Factors influencing glycosylation of Trichoderma reesei cellulases. II: N-glycosylation of Cel7A core protein isolated from different strains. Glycobiology 14:725–737PubMedGoogle Scholar
  114. 114.
    Stals I, Sandra K, Geysens S et al (2004) Factors influencing glycosylation of Trichoderma reesei cellulases. I: Postsecretorial changes of the O- and N-glycosylation pattern of Cel7A. Glycobiology 14:713–724PubMedGoogle Scholar
  115. 115.
    Maras M, De Bruyn A, Vervecken W et al (1999) In vivo synthesis of complex N-glycans by expression of human N-acetylglucosaminyltransferase I in the filamentous fungus Trichoderma reesei. FEBS Lett 452:365–370PubMedGoogle Scholar
  116. 116.
    Saloheimo M, Lund M, Penttila ME (1999) The protein disulphide isomerase gene of the fungus Trichoderma reesei is induced by endoplasmic reticulum stress and regulated by the carbon source. Mol Gen Genet 262:35–45PubMedGoogle Scholar
  117. 117.
    Collen A, Saloheimo M, Bailey M et al (2005) Protein production and induction of the unfolded protein response in Trichoderma reesei strain Rut-C30 and its transfor-mant expressing endoglucanase I with a hydrophobic tag. Biotechnol Bioeng 89:335–344PubMedGoogle Scholar
  118. 118.
    Spolaore P, Joannis-Cassan C, Duran E et al (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96PubMedGoogle Scholar
  119. 119.
    Apt KE, Behrens PW (1999) Commercial developments in microalgal biotechnology. J Phycol 35:215–226Google Scholar
  120. 120.
    Walker TL, Purton S, Becker DK et al (2005) Microalgae as bioreactors. Plant Cell Rep 24:629–641PubMedGoogle Scholar
  121. 121.
    Specht E, Miyake-Stoner S, Mayfield S (2010) Micro-algae come of age as a platform for recombinant protein production. Biotechnol Lett 32:1373–1383PubMedCentralPubMedGoogle Scholar
  122. 122.
    Gong Y, Hu H, Gao Y et al (2011) Microalgae as platforms for production of recombinant proteins and valuable compounds: progress and prospects. J Ind Microbiol Biotechnol 38:1879–1890PubMedGoogle Scholar
  123. 123.
    Janssen M, Tramper J, Mur LR et al (2003) Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol Bioeng 81:193–210PubMedGoogle Scholar
  124. 124.
    Mayfield SP, Franklin SE, Lerner RA (2003) Expression and assembly of a fully active antibody in algae. Proc Natl Acad Sci U S A 100:438–442PubMedCentralPubMedGoogle Scholar
  125. 125.
    Griesbeck C, Kobl I, Heitzer M (2006) Chlamydomonas reinhardtii: a protein expression system for pharmaceutical and biotechnological proteins. Mol Biotechnol 34:213–223PubMedGoogle Scholar
  126. 126.
    Rosenberg JN, Oyler GA, Wilkinson L et al (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 19:430–436PubMedGoogle Scholar
  127. 127.
    Boynton JE, Gillham NW, Harris EH et al (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240:1534–1538PubMedGoogle Scholar
  128. 128.
    Debuchy R, Purton S, Rochaix JD (1989) The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. EMBO J 8:2803–2809PubMedCentralPubMedGoogle Scholar
  129. 129.
    Fernandez E, Schnell R, Ranum LP et al (1989) Isolation and characterization of the nitrate reductase structural gene of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 86:6449–6453PubMedCentralPubMedGoogle Scholar
  130. 130.
    Mayfield SP, Schultz J (2004) Development of a luciferase reporter gene, luxCt, for Chlamydomonas reinhardtii chloroplast. Plant J 37:449–458PubMedGoogle Scholar
  131. 131.
    Franklin S, Ngo B, Efuet E et al (2002) Development of a GFP reporter gene for Chlamydomonas reinhardtii chloroplast. Plant J 30:733–744PubMedGoogle Scholar
  132. 132.
    Barnes D, Franklin S, Schultz J et al (2005) Contribution of 5′- and 3′-untranslated regions of plastid mRNAs to the expression of Chlamydomonas reinhardtii chloroplast genes. Mol Genet Genomics 274:625–636PubMedGoogle Scholar
  133. 133.
    Potvin G, Zhang Z (2010) Strategies for high-level recombinant protein expression in transgenic microalgae: a review. Biotechnol Adv 28:910–918PubMedGoogle Scholar
  134. 134.
    Franklin SE, Mayfield SP (2005) Recent developments in the production of human therapeutic proteins in eukaryotic algae. Expert Opin Biol Ther 5:225–235PubMedGoogle Scholar
  135. 135.
    Grayson WL, Martens TP, Eng GM et al (2009) Biomimetic approach to tissue engineering. Semin Cell Dev Biol 20:665–673PubMedCentralPubMedGoogle Scholar
  136. 136.
    Boehm R (2007) Bioproduction of therapeutic proteins in the 21st century and the role of plants and plant cells as production platforms. Ann N Y Acad Sci 1102:121–134PubMedGoogle Scholar
  137. 137.
    Weathers PJ, Towler MJ, Xu J (2010) Bench to batch: advances in plant cell culture for producing useful products. Appl Microbiol Biotechnol 85:1339–1351PubMedGoogle Scholar
  138. 138.
    Li SS, Tsai HJ (2009) Transgenic microalgae as a non-antibiotic bactericide producer to defend against bacterial pathogen infection in the fish digestive tract. Fish Shellfish Immunol 26:316–325PubMedGoogle Scholar
  139. 139.
    Joensuu JJ, Conley AJ, Linder MB et al (2012) Bioseparation of recombinant proteins from plant extract with hydrophobin fusion technology. Methods Mol Biol 824:527–534PubMedGoogle Scholar
  140. 140.
    Tian L, Sun SS (2011) A cost-effective ELP-intein coupling system for recombinant protein purification from plant production platform. PLoS One 6:e24183PubMedCentralPubMedGoogle Scholar
  141. 141.
    Torrent M, Llop-Tous I, Ludevid M (2009) Protein body induction: a new tool to produce and recover recombinant proteins in plants. Methods Mol Biol 483:193–208PubMedGoogle Scholar
  142. 142.
    Wilken LR, Nikolov ZL (2012) Recovery and purification of plant-made recombinant proteins. Biotechnol Adv 30:419–433PubMedGoogle Scholar
  143. 143.
    Torrent M, Llompart B, Lasserre-Ramassamy S et al (2009) Eukaryotic protein production in designed storage organelles. BMC Biol 7:5PubMedCentralPubMedGoogle Scholar
  144. 144.
    Katzen F, Chang G, Kudlicki W (2005) The past, present and future of cell-free protein synthesis. Trends Biotechnol 23:150–156PubMedGoogle Scholar
  145. 145.
    Swartz J (2006) Developing cell-free biology for industrial applications. J Ind Microbiol Biotechnol 33:476–485PubMedGoogle Scholar
  146. 146.
    Carlson ED, Gan R, Hodgman CE et al (2012) Cell-free protein synthesis: applications come of age. Biotechnol Adv 30:1185–1194PubMedCentralPubMedGoogle Scholar
  147. 147.
    Endo Y, Sawasaki T (2006) Cell-free expression systems for eukaryotic protein production. Curr Opin Biotechnol 17:373–380PubMedGoogle Scholar
  148. 148.
    Dadashipour M, Fukuta Y, Asano Y (2011) Comparative expression of wild-type and highly soluble mutant His103Leu of hydroxynitrile lyase from Manihot esculenta in prokaryotic and eukaryotic expression systems. Protein Expr Purif 77:92–97PubMedGoogle Scholar
  149. 149.
    Kudou M, Ejima D, Sato H et al (2011) Refolding single-chain antibody (scFv) using lauroyl-L-glutamate as a solubilization detergent and arginine as a refolding additive. Protein Expr Purif 77:68–74PubMedGoogle Scholar
  150. 150.
    Shimizu Y, Inoue A, Tomari Y et al (2001) Cell-free translation reconstituted with purified components. Nat Biotechnol 19:751–755PubMedGoogle Scholar
  151. 151.
    Shimizu Y, Kanamori T, Ueda T (2005) Protein synthesis by pure translation systems. Methods 36:299–304PubMedGoogle Scholar
  152. 152.
    Spirin AS, Baranov VI, Ryabova LA et al (1988) A continuous cell-free translation system capable of producing polypeptides in high yield. Science 242:1162–1164PubMedGoogle Scholar
  153. 153.
    Kim DM, Choi CY (1996) A semicontinuous prokaryotic coupled transcription/translation system using a dialysis membrane. Biotechnol Prog 12:645–649PubMedGoogle Scholar
  154. 154.
    Kigawa T, Yabuki T, Yoshida Y et al (1999) Cell-free production and stable-isotope labeling of milligram quantities of proteins. FEBS Lett 442:15–19PubMedGoogle Scholar
  155. 155.
    Yamamoto YI, Nagahori H, Yao SL et al (1996) Hollow fiber reactor for continuous flow cell-free protein production. J Chem Eng Jpn 29:1047–1050Google Scholar
  156. 156.
    Kawarasaki Y, Nakano H, Yamane T (1994) Prolonged cell-free protein synthesis in a batch system using wheat germ extract. Biosci Biotechnol Biochem 58:1911–1913PubMedGoogle Scholar
  157. 157.
    Kawarasaki Y, Kawai T, Nakano H et al (1995) A long-lived batch reaction system of cell-free protein synthesis. Anal Biochem 226:320–324PubMedGoogle Scholar
  158. 158.
    Jewett MC, Swartz JR (2004) Rapid expression and purification of 100 nmol quantities of active protein using cell-free protein synthesis. Biotechnol Prog 20:102–109PubMedGoogle Scholar
  159. 159.
    Garcia-Fruitos E, Sabate R, de Groot NS et al (2011) Biological role of bacterial inclusion bodies: a model for amyloid aggregation. FEBS J 278:2419–2427PubMedGoogle Scholar
  160. 160.
    Wang L (2009) Towards revealing the structure of bacterial inclusion bodies. Prion 3:139–145PubMedCentralPubMedGoogle Scholar
  161. 161.
    Mitraki A (2010) Protein aggregation from inclusion bodies to amyloid and biomaterials. Adv Protein Chem Struct Biol 79:89–125PubMedGoogle Scholar
  162. 162.
    Doi H, Mitsui K, Kurosawa M et al (2004) Identification of ubiquitin-interacting proteins in purified polyglutamine aggregates. FEBS Lett 571:171–176PubMedGoogle Scholar
  163. 163.
    Suhr ST, Senut MC, Whitelegge JP et al (2001) Identities of sequestered proteins in aggregates from cells with induced polyglutamine expression. J Cell Biol 153:283–294PubMedCentralPubMedGoogle Scholar
  164. 164.
    Zhang X, Qian SB (2011) Chaperone-mediated hierarchical control in targeting misfolded proteins to aggresomes. Mol Biol Cell 22:3277–3288PubMedCentralPubMedGoogle Scholar
  165. 165.
    Beaudoin S, Goggin K, Bissonnette C et al (2008) Aggresomes do not represent a general cellular response to protein misfolding in mammalian cells. BMC Cell Biol 9:59PubMedCentralPubMedGoogle Scholar
  166. 166.
    Tanaka M, Kim YM, Lee G et al (2004) Aggresomes formed by alpha-synuclein and synphilin-1 are cytoprotective. J Biol Chem 279:4625–4631PubMedGoogle Scholar
  167. 167.
    Wang Y, Meriin AB, Costello CE et al (2007) Characterization of proteins associated with polyglutamine aggregates: a novel approach towards isolation of aggregates from protein conformation disorders. Prion 1:128–135PubMedCentralPubMedGoogle Scholar
  168. 168.
    Meriin AB, Wang Y, Sherman MY (2010) Isolation of aggresomes and other large aggregates. Curr Protoc Cell Biol. Chapter 3:Unit-9Google Scholar
  169. 169.
    Calo-Fernandez B, Martinez-Hurtado JL (2012) Biosimilars: company strategies to capture value from the biologics market. Pharmaceuticals 5:1393–1408PubMedCentralPubMedGoogle Scholar
  170. 170.
    Weinacker D, Rabert C, Zepeda AB et al (2013) Applications of recombinant in the healthcare industry. Braz J Microbiol 44:1043–1048PubMedCentralPubMedGoogle Scholar
  171. 171.
    Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306PubMedGoogle Scholar
  172. 172.
    Brondyk WH (2009) Selecting an appropriate method for expressing a recombinant protein. Methods Enzymol 463:131–147PubMedGoogle Scholar
  173. 173.
    Chen R (2012) Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol Adv 30:1102–1107PubMedGoogle Scholar
  174. 174.
    Grillberger L, Kreil TR, Nasr S et al (2009) Emerging trends in plasma-free manufacturing of recombinant protein therapeutics expressed in mammalian cells. Biotechnol J 4:186–201PubMedCentralPubMedGoogle Scholar
  175. 175.
    Berkowitz SA, Engen JR, Mazzeo JR et al (2012) Analytical tools for characterizing biopharmaceuticals and the implications for biosimilars. Nat Rev Drug Discov 11:527–540PubMedCentralPubMedGoogle Scholar
  176. 176.
    Lebendiker M, Danieli T (2014) Production of prone-to-aggregate proteins. FEBS Lett 588:236–246PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Neus Ferrer-Miralles
    • 1
    • 2
  • Paolo Saccardo
    • 1
    • 2
  • José Luis Corchero
    • 1
    • 2
  • Zhikun Xu
    • 1
    • 2
  • Elena García-Fruitós
    • 3
    • 4
  1. 1.Departament de Genètica i de Microbiologia, Institut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaBarcelonaSpain
  2. 2.CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)Universitat Autònoma de BarcelonaBarcelonaSpain
  3. 3.Departament de Genètica i de Microbiologia, Institut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaBarcelonaSpain
  4. 4.CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)Universitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations