Skip to main content

Optogenetic Regulation of Dopamine Receptor-Expressing Neurons

Part of the Neuromethods book series (NM,volume 96)

Abstract

Optogenetics has provided neuroscientists with the tools to control activity of specific neurons within a circuit. Optogenetic manipulation of dopamine receptor-containing neurons in the striatum holds great potential in understanding and treating a number of neuropsychiatric and neurological disorders. Coupling optogenetics with cell subtype-specific transgenic mouse lines permits dissection of dopamine receptor 1 (D1)- and dopamine receptor 2 (D2)-enriched circuits including the mesolimbic reward circuit and the basal ganglia circuit. This has led to multiple new insights into the function of dopamine receptor-expressing neurons in motivational and motor behaviors. This article discusses techniques to express microbial opsins in dopamine receptor-expressing neurons and to optogenetically activate or silence these neurons within the striatum in awake, behaving animals.

Key words

  • Optogenetics
  • Dopamine receptors
  • Channelrhodopsin
  • Halorhodopsin
  • Cre-inducible AAVs
  • BAC transgenic animals
  • Striatum
  • Nucleus accumbens
  • Medium spiny neurons

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-2196-6_18
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-2196-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.00
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bernstein JG, Boyden ES (2011) Optogenetic tools for analyzing the neural circuits of behavior. Trends Cogn Sci 15(12):592–600

    PubMed Central  PubMed  CrossRef  Google Scholar 

  2. Yizhar O, Fenno FE, Davidson TJ et al (2011) Optogenetics in neural systems. Neuron 71(1):9–34

    CAS  PubMed  CrossRef  Google Scholar 

  3. Yizhar O (2012) Optogenetic insights into social behavior function. Biol Psych 71:1075–1080

    CrossRef  Google Scholar 

  4. Tye KM, Diesseroth K (2012) Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci 13(4):251–266

    CAS  PubMed  CrossRef  Google Scholar 

  5. Lenz JD, Lobo MK (2013) Optogenetic insights into striatal function and behavior. Behav Brain Res 255:44–54

    CAS  PubMed  CrossRef  Google Scholar 

  6. Kravitz AV, Kreitzer AC (2012) Striatal mechanisms underlying movement, reinforcement, and punishment. Physiol (Bethesda) 27(3):167–177

    CrossRef  Google Scholar 

  7. Gerfen CR (1992) The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci 15(4):133–139

    CAS  PubMed  CrossRef  Google Scholar 

  8. Yang XW, Model P, Heintz N (1997) Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nat Biotechnol 15(9):859–865

    CAS  PubMed  CrossRef  Google Scholar 

  9. Gong S, Zheng C, Doughty ML et al (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425:917–925

    CAS  PubMed  CrossRef  Google Scholar 

  10. Gong S, Doughty M, Harbaugh CR et al (2007) Targeting cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J Neurosci 27(37):9817–9823

    CAS  PubMed  CrossRef  Google Scholar 

  11. Kravitz AV, Freeze BS, Parker PRL et al (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466:622–626

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  12. Kravitz AV, Tye LD, Kreitzer AC (2012) Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat Neurosci 15(6):816–818

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  13. Lobo MK, Covington HE III, Chaudhury D et al (2010) Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330(6002):385–390

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  14. Tai L-H, Lee AM, Benavidez N et al (2012) Transient stimulation of distinct subpopulations of striatal neurons mimics changes in action value. Nat Neurosci 15:1281–1289

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  15. Bock R, Shin JH, Kaplan AR (2013) Strengthening the accumbal indirect pathway promotes resilience to compulsive cocaine use. Nat Neurosci 16:632–638

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  16. Albin RL, Young AB, Penny JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12(10):366–375

    CAS  PubMed  CrossRef  Google Scholar 

  17. Graybiel A (2000) The basal ganglia. Curr Biol 10(14):R509–R511

    CAS  PubMed  CrossRef  Google Scholar 

  18. Chandra R, Lenz JD, Gancarz AM et al (2013) Optogenetic inhibition of D1R containing nucleus accumbens neurons alters cocaine-mediated regulation of Tiam1. Front Mol Neurosci 6(13):1–8. doi:10.3389/fnmol.2013.00013

    Google Scholar 

  19. Ferguson SM, Eskenazi D, Ishikawa M et al (2011) Transient neuronal inhibition reveals opposing roles of indirect and direct pathways in sensitization. Nat Neurosci 14(1):22–24

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  20. Ferguson SM, Phillips PEM, Roth BL et al (2013) Direct-pathway striatal neurons regulate the retention of decision-making strategies. J Neurosci 33(28):11668–11676

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  21. Hikida T, Kimura K, Wada N et al (2010) Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior. Neuron 66(6):896–907

    CAS  PubMed  CrossRef  Google Scholar 

  22. Kravitz A, Owen SF, Kreitzer AC (2013) Optogenetic identification of striatal projection neuron subtypes during in vivo recordings. Brain Res 1511:21–32

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  23. Sparta D, Stamatakis AM, Phillips JL et al (2012) Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits. Nat Protoc 7:12–23

    CAS  CrossRef  Google Scholar 

  24. Mattis J, Tye KM, Ferenczi EA et al (2012) Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat Methods 9:159–172

    CAS  PubMed Central  CrossRef  Google Scholar 

  25. Zhang F, Gradinaru V, Adamantidis AR et al (2010) Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat Protoc 5:439–456

    CAS  PubMed  CrossRef  Google Scholar 

  26. Narayanan NS, Land BB, Solder JE et al (2012) Prefrontal D1 dopamine signaling is required for temporal control. Proc Natl Acad Sci U S A 109(50):20726–20731

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  27. Deisseroth K (2013) Predicted irradiance values: model based on direct measurements in mammalian brain tissue. http://www.stanford.edu/group/dlab/cgi-bin/graph/chart.php

  28. Aravanis AM, Wang LP, Zhang F et al (2007) An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng 4:S143–S156

    PubMed  CrossRef  Google Scholar 

  29. Arumbruster BN, Li X, Pausch MH et al (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A 104(12):5163–5168

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Kay Lobo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Francis, T.C., Lobo, M.K. (2015). Optogenetic Regulation of Dopamine Receptor-Expressing Neurons. In: Tiberi, M. (eds) Dopamine Receptor Technologies. Neuromethods, vol 96. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2196-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2196-6_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2195-9

  • Online ISBN: 978-1-4939-2196-6

  • eBook Packages: Springer Protocols