Optogenetic Regulation of Dopamine Receptor-Expressing Neurons

  • T. Chase Francis
  • Mary Kay Lobo
Part of the Neuromethods book series (NM, volume 96)


Optogenetics has provided neuroscientists with the tools to control activity of specific neurons within a circuit. Optogenetic manipulation of dopamine receptor-containing neurons in the striatum holds great potential in understanding and treating a number of neuropsychiatric and neurological disorders. Coupling optogenetics with cell subtype-specific transgenic mouse lines permits dissection of dopamine receptor 1 (D1)- and dopamine receptor 2 (D2)-enriched circuits including the mesolimbic reward circuit and the basal ganglia circuit. This has led to multiple new insights into the function of dopamine receptor-expressing neurons in motivational and motor behaviors. This article discusses techniques to express microbial opsins in dopamine receptor-expressing neurons and to optogenetically activate or silence these neurons within the striatum in awake, behaving animals.

Key words

Optogenetics Dopamine receptors Channelrhodopsin Halorhodopsin Cre-inducible AAVs BAC transgenic animals Striatum Nucleus accumbens Medium spiny neurons 


  1. 1.
    Bernstein JG, Boyden ES (2011) Optogenetic tools for analyzing the neural circuits of behavior. Trends Cogn Sci 15(12):592–600PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Yizhar O, Fenno FE, Davidson TJ et al (2011) Optogenetics in neural systems. Neuron 71(1):9–34PubMedCrossRefGoogle Scholar
  3. 3.
    Yizhar O (2012) Optogenetic insights into social behavior function. Biol Psych 71:1075–1080CrossRefGoogle Scholar
  4. 4.
    Tye KM, Diesseroth K (2012) Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci 13(4):251–266PubMedCrossRefGoogle Scholar
  5. 5.
    Lenz JD, Lobo MK (2013) Optogenetic insights into striatal function and behavior. Behav Brain Res 255:44–54PubMedCrossRefGoogle Scholar
  6. 6.
    Kravitz AV, Kreitzer AC (2012) Striatal mechanisms underlying movement, reinforcement, and punishment. Physiol (Bethesda) 27(3):167–177CrossRefGoogle Scholar
  7. 7.
    Gerfen CR (1992) The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci 15(4):133–139PubMedCrossRefGoogle Scholar
  8. 8.
    Yang XW, Model P, Heintz N (1997) Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nat Biotechnol 15(9):859–865PubMedCrossRefGoogle Scholar
  9. 9.
    Gong S, Zheng C, Doughty ML et al (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425:917–925PubMedCrossRefGoogle Scholar
  10. 10.
    Gong S, Doughty M, Harbaugh CR et al (2007) Targeting cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J Neurosci 27(37):9817–9823PubMedCrossRefGoogle Scholar
  11. 11.
    Kravitz AV, Freeze BS, Parker PRL et al (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466:622–626PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Kravitz AV, Tye LD, Kreitzer AC (2012) Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat Neurosci 15(6):816–818PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Lobo MK, Covington HE III, Chaudhury D et al (2010) Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330(6002):385–390PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Tai L-H, Lee AM, Benavidez N et al (2012) Transient stimulation of distinct subpopulations of striatal neurons mimics changes in action value. Nat Neurosci 15:1281–1289PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Bock R, Shin JH, Kaplan AR (2013) Strengthening the accumbal indirect pathway promotes resilience to compulsive cocaine use. Nat Neurosci 16:632–638PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Albin RL, Young AB, Penny JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12(10):366–375PubMedCrossRefGoogle Scholar
  17. 17.
    Graybiel A (2000) The basal ganglia. Curr Biol 10(14):R509–R511PubMedCrossRefGoogle Scholar
  18. 18.
    Chandra R, Lenz JD, Gancarz AM et al (2013) Optogenetic inhibition of D1R containing nucleus accumbens neurons alters cocaine-mediated regulation of Tiam1. Front Mol Neurosci 6(13):1–8. doi: 10.3389/fnmol.2013.00013 Google Scholar
  19. 19.
    Ferguson SM, Eskenazi D, Ishikawa M et al (2011) Transient neuronal inhibition reveals opposing roles of indirect and direct pathways in sensitization. Nat Neurosci 14(1):22–24PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Ferguson SM, Phillips PEM, Roth BL et al (2013) Direct-pathway striatal neurons regulate the retention of decision-making strategies. J Neurosci 33(28):11668–11676PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Hikida T, Kimura K, Wada N et al (2010) Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior. Neuron 66(6):896–907PubMedCrossRefGoogle Scholar
  22. 22.
    Kravitz A, Owen SF, Kreitzer AC (2013) Optogenetic identification of striatal projection neuron subtypes during in vivo recordings. Brain Res 1511:21–32PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Sparta D, Stamatakis AM, Phillips JL et al (2012) Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits. Nat Protoc 7:12–23CrossRefGoogle Scholar
  24. 24.
    Mattis J, Tye KM, Ferenczi EA et al (2012) Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat Methods 9:159–172PubMedCentralCrossRefGoogle Scholar
  25. 25.
    Zhang F, Gradinaru V, Adamantidis AR et al (2010) Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat Protoc 5:439–456PubMedCrossRefGoogle Scholar
  26. 26.
    Narayanan NS, Land BB, Solder JE et al (2012) Prefrontal D1 dopamine signaling is required for temporal control. Proc Natl Acad Sci U S A 109(50):20726–20731PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Deisseroth K (2013) Predicted irradiance values: model based on direct measurements in mammalian brain tissue.
  28. 28.
    Aravanis AM, Wang LP, Zhang F et al (2007) An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng 4:S143–S156PubMedCrossRefGoogle Scholar
  29. 29.
    Arumbruster BN, Li X, Pausch MH et al (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A 104(12):5163–5168CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Anatomy and NeurobiologyUniversity of Maryland School of MedicineBaltimoreUSA

Personalised recommendations