Advertisement

Freeze-Drying of Lactic Acid Bacteria

  • Fernanda FonsecaEmail author
  • Stéphanie Cenard
  • Stéphanie Passot
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1257)

Abstract

Lactic acid bacteria are of great importance for the food and biotechnology industry. They are widely used as starters for manufacturing food (e.g., yogurt, cheese, fermented meats, and vegetables) and probiotic products, as well as for green chemistry applications. Freeze-drying or lyophilization is a convenient method for preservation of bacteria. By reducing water activity to values below 0.2, it allows long-term storage and low-cost distribution at suprazero temperatures, while minimizing losses in viability and functionality. Stabilization of bacteria via freeze-drying starts with the addition of a protectant solution to the bacterial suspension. Freeze-drying includes three steps, namely, (1) freezing of the concentrated and protected cell suspension, (2) primary drying to remove ice by sublimation, and (3) secondary drying to remove unfrozen water by desorption. In this chapter we describe a method for freeze-drying of lactic acid bacteria at a pilot scale, thus allowing control of the process parameters for maximal survival and functionality recovery.

Key words

Lactic acid bacteria (LAB) Starter Fermentation Freeze-drying Lyophilization Formulation Lyoprotectors Preservation 

Notes

Acknowledgment

This work was supported by the National Institute of Agronomic Research (Paris, France) and by the Paris Institute of Technology for Life, Food and Environmental Sciences (AgroParisTech, Paris, France).

References

  1. 1.
    Jennings T (2002) Lyophilization: introduction and basic principles. CRC, Washington, DCGoogle Scholar
  2. 2.
    Roy ML, Pikal MJ (1989) Process control in freeze drying: determination of the end point of sublimation drying by an electronic moisture sensor. J Parenter Sci Technol 43:60–66Google Scholar
  3. 3.
    Searles JA, Carpenter JF, Randolph TW (2001) The ice nucleation temperature determines the primary drying rate of lyophilization for samples frozen on a temperature-controlled shelf. J Pharm Sci 90:860–871CrossRefGoogle Scholar
  4. 4.
    Fonseca F, Passot S, Cunin O, Marin M (2004) Collapse temperature of freeze-dried Lactobacillus bulgaricus suspensions and protective media. Biotechnol Prog 20:229–238CrossRefGoogle Scholar
  5. 5.
    Fonseca F, Passot S, Lieben P, Marin M (2004) Collapse temperature of bacterial suspensions: the effect of cell type and concentration. Cryo Letters 25:425–434Google Scholar
  6. 6.
    Passot S, Cenard S, Douania I, Tréléa IC, Fonseca F (2012) Critical water activity and amorphous state for optimal preservation of lyophilised lactic acid bacteria. Food Chem 132:1699–1705CrossRefGoogle Scholar
  7. 7.
    Font de Valdez G, Savoy de Giori G, Pesce de Ruiz Holgado A, Oliver G (1983) Comparative study of the efficiency of some additives in protecting lactic acid bacteria against freeze-drying. Cryobiology 20:560–566CrossRefGoogle Scholar
  8. 8.
    Miyamoto-Shinohara Y, Sukenobe J, Imaizumi T, Nakahara T (2006) Survival curves for microbial species stored by freeze-drying. Cryobiology 52:27–32CrossRefGoogle Scholar
  9. 9.
    Crowe JH, Crowe LM, Carpenter JF, Rudolph AS, Wistrom CA, Spargo BJ, Anchordoguy TJ (1988) Interactions of sugars with membranes. Biochim Biophys Acta 947:367–384CrossRefGoogle Scholar
  10. 10.
    Crowe JH, Crowe LM, Carpenter JF (1993) Preserving dry biomaterials: the water replacement hypothesis, part 1. Biopharmacology 6:28–33Google Scholar
  11. 11.
    Leslie SB, Israeli E, Lighthart B, Crowe JH, Crowe LM (1995) Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Environ Microbiol 61:3592–3597Google Scholar
  12. 12.
    Carvalho AS, Silva J, Ho P, Teixeira P, Malcata FX, Gibbs P (2004) Relevant factors for the preparation of freeze-dried lactic acid bacteria. Int Dairy J 14:835–847CrossRefGoogle Scholar
  13. 13.
    Kurtmann L, Carlsen CU, Skibsted LH, Risbo J (2009) Water activity-temperature state diagrams of freeze-dried Lactobacillus acidophilus (La-5): influence of physical state on bacterial survival during storage. Biotechnol Prog 25:265–270CrossRefGoogle Scholar
  14. 14.
    Castro HP, Teixeira PM, Kirby R (1995) Storage of lyophilized cultures of Lactobacillus bulgaricus under different relative humidities and atmospheres. Appl Microbiol Biotechnol 44:172–176CrossRefGoogle Scholar
  15. 15.
    Champagne CP, Gardner N, Brochu E, Beaulieu Y (1991) The freeze-drying of lactic acid bacteria. A review. Can Inst Food Sci Technol 24:118–128CrossRefGoogle Scholar
  16. 16.
    Meng XC, Stanton C, Fitzgerald GF, Daly C, Ross RP (2008) Anhydrobiotics: the challenges of drying probiotic cultures. Food Chem 106:1406–1416CrossRefGoogle Scholar
  17. 17.
    Tymczyszyn EE, Sosa N, Gerbino E, Hugo A, Gomez-Zavaglia A, Schebor C (2012) Effect of physical properties on the stability of Lactobacillus bulgaricus in a freeze-dried galacto-oligosaccharides matrix. Int J Food Microbiol 155:217–221CrossRefGoogle Scholar
  18. 18.
    Santivarangkna C, Aschenbrenner M, Kulozik U, Foerst P (2011) Role of glassy state on stabilities of freeze-dried probiotics. J Food Sci 76:R152–R156CrossRefGoogle Scholar
  19. 19.
    Santivarangkna C, Kulozik U, Foerst P (2006) Effect of carbohydrates on the survival of Lactobacillus helveticus during vacuum drying. Lett Appl Microbiol 42:271–276CrossRefGoogle Scholar
  20. 20.
    Castro HP, Teixeira PM, Kirby R (1996) Changes in the cell membrane of Lactobacillus bulgaricus during storage following freeze-drying. Biotechnol Lett 18:99–104CrossRefGoogle Scholar
  21. 21.
    Teixeira P, Castro H, Kirby R (1996) Evidence of membrane lipid oxidation of spray-dried Lactobacillus bulgaricus during storage. Lett Appl Microbiol 22:34–38CrossRefGoogle Scholar
  22. 22.
    Schoug A, Olsson J, Carlfors J, Schnurer J, Hakansson S (2006) Freeze-drying of Lactobacillus coryniformis Si3: effects of sucrose concentration, cell density, and freezing rate on cell survival and thermophysical properties. Cryobiology 53:119–127CrossRefGoogle Scholar
  23. 23.
    Zhang J, Du GC, Zhang YP, Liao XY, Wang M, Li Y, Chen J (2010) Glutathione protects Lactobacillus sanfranciscensis against freeze-thawing, freeze-drying, and cold treatment. Appl Environ Microbiol 76:2989–2996CrossRefGoogle Scholar
  24. 24.
    Passot S, Tréléa IC, Marin M, Galan M, Morris GJ, Fonseca F (2009) Effect of controlled ice nucleation on primary drying stage and protein recovery in vials cooled in a modified freeze-dryer. J Biomech Eng 131:0745111–0745115CrossRefGoogle Scholar
  25. 25.
    Fonseca F, Béal C, Corrieu G (2000) Method of quantifying the loss of acidification activity of lactic acid starters during freezing and frozen storage. J Dairy Res 67:83–90CrossRefGoogle Scholar
  26. 26.
    Fonseca F, Marin M, Morris GJ (2006) Stabilization of frozen Lactobacillus delbrueckii subsp. bulgaricus in glycerol suspensions: freezing kinetics and storage temperature effects. Appl Environ Microbiol 72:6474–6482CrossRefGoogle Scholar
  27. 27.
    Streit F, Corrieu G, Béal C (2010) Effect of centrifugation conditions on the cryotolerance of Lactobacillus bulgaricus CFL1. Food Bioprocess Technol 3:36–42CrossRefGoogle Scholar
  28. 28.
    Fonseca F, Béal C, Mihoub F, Marin M, Corrieu G (2003) Improvement of cryopreservation of Lactobacillus delbrueckii subsp. bulgaricus CFL1 with additives displaying different protective effects. Int Dairy J 67:83–90CrossRefGoogle Scholar
  29. 29.
    Tréléa IC, Passot S, Marin M, Fonseca F (2009) Model for heat and mass transfer in freeze-drying pellets. J Biomech Eng 131:0745011–0745017CrossRefGoogle Scholar
  30. 30.
    Chavez BE, Ledeboer AM (2007) Drying of probiotics: optimization of formulation and process to enhance storage survival. Drying Technol 25:1193–1201CrossRefGoogle Scholar
  31. 31.
    Font de Valdez G, Savoy de Giori G, Pesce de Ruiz Holgado A, Oliver G (1985) Rehydration conditions and viability of freeze-dried lactic acid bacteria. Cryobiology 22:574–577CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Fernanda Fonseca
    • 1
    • 2
    Email author
  • Stéphanie Cenard
    • 1
    • 2
  • Stéphanie Passot
    • 1
    • 2
  1. 1.Institut National de la Recherche Agronomique (INRA), UMR 782 Génie et Microbiologie des Procédés Alimentaires (GMPA)Thiverval-GrignonFrance
  2. 2.AgroParisTech, Génie et Microbiologie des Procédés Alimentaires (GMPA)Thiverval-GrignonFrance

Personalised recommendations