Epistasis pp 315-325 | Cite as

Epistasis Analysis Using ReliefF

Part of the Methods in Molecular Biology book series (MIMB, volume 1253)


Here we introduce the ReliefF machine learning algorithm and some of its extensions for detecting and characterizing epistasis in genetic association studies. We provide a general overview of the method and then highlight some of the modifications that have greatly improved its power for genetic analysis. We end with a few examples of published studies of complex human diseases that have used ReliefF.

Key words

Epistasis Machine learning Association studies Genetic analysis Gene–gene interaction 



This work was supported by National Institutes of Health (NIH) grants AI59694, EY022300, GM103534, GM103506, LM009012, LM010098, and LM011360.


  1. 1.
    Moore JH, Asselbergs FW, Williams SM (2010) Bioinformatics challenges for genome-wide association studies. Bioinformatics 26:445–455PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    McKinney BA, Reif DM, Ritchie MD et al (2006) Machine learning for detecting gene-gene interactions: a review. Appl Bioinforma 5:77–88CrossRefGoogle Scholar
  3. 3.
    Cordell HJ (2009) Detecting gene-gene interactions that underlie human diseases. Nat Rev Genet 10:392–404PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Hahn LW, Ritchie MD, Moore JH (2003) Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 19:376–382PubMedCrossRefGoogle Scholar
  5. 5.
    Ritchie MD, Hahn LW, Roodi N et al (2001) Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 69:138–147PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Hahn LW, Moore JH (2004) Ideal discrimination of discrete clinical endpoints using multilocus genotypes. In Silico Biol 4:183–194PubMedGoogle Scholar
  7. 7.
    Ritchie MD, Hahn LW, Moore JH (2003) Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. Genet Epidemiol 24:150–157PubMedCrossRefGoogle Scholar
  8. 8.
    Moore JH (2004) Computational analysis of gene-gene interactions using multifactor dimensionality reduction. Expert Rev Mol Diagn 4:795–803PubMedCrossRefGoogle Scholar
  9. 9.
    Moore JH (2010) Detecting, characterizing, and interpreting nonlinear gene-gene interactions using multifactor dimensionality reduction. Adv Genet 72:101–116PubMedCrossRefGoogle Scholar
  10. 10.
    Velez DR, White BC, Motsinger AA et al (2007) A balanced accuracy function for epistasis modeling in imbalanced datasets using multifactor dimensionality reduction. Genet Epidemiol 31:306–315PubMedCrossRefGoogle Scholar
  11. 11.
    Pattin KA, White BC, Barney N et al (2009) A computationally efficient hypothesis testing method for epistasis analysis using multifactor dimensionality reduction. Genet Epidemiol 33:87–94PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Moore JH (2007) Genome-wide analysis of epistasis using multifactor dimensionality reduction: feature selection and construction in the domain of human genetics. In: Zhu X, Davidson I (eds) Knowledge discovery and data mining: challenges and realities. IGI Global, Hershey, PA, pp 17–30CrossRefGoogle Scholar
  13. 13.
    Cordell HJ (2002) Epistasis: what it means, what it doesn’t mean, and statistical methods to detect it in humans. Hum Mol Genet 11:2463–2468PubMedCrossRefGoogle Scholar
  14. 14.
    Phillips PC (2008) Epistasis—the essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet 9:855–867PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Phillips PC (1998) The language of gene interaction. Genetics 149:1167–1171PubMedCentralPubMedGoogle Scholar
  16. 16.
    Moore JH (2003) The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Hum Hered 56:73–82PubMedCrossRefGoogle Scholar
  17. 17.
    Moore JH, Williams SM (2005) Traversing the conceptual divide between biological and statistical epistasis: systems biology and a more modern synthesis. Bioessays 27:637–646PubMedCrossRefGoogle Scholar
  18. 18.
    Moore JH (2005) A global view of epistasis. Nat Genet 37:13–14PubMedCrossRefGoogle Scholar
  19. 19.
    Tyler AL, Asselbergs FW, Williams SM et al (2009) Shadows of complexity: what biological networks reveal about epistasis and pleiotropy. Bioessays 31:220–227PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Cowper-Sal lari R, Cole MD, Karagas MR et al (2011) Layers of epistasis: genome-wide regulatory networks and network approaches to genome-wide association studies, Wiley interdisciplinary reviews. Syst Biol Med 3:513–526Google Scholar
  21. 21.
    Moore JH, Williams SM (2009) Epistasis and its implications for personal genetics. Am J Hum Genet 85:309–320PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Bush WS, Dudek SM, Ritchie MD (2009) Biofilter: a knowledge-integration system for the multi-locus analysis of genome-wide association studies. Pacific symposium on biocomputing, pp 368–379Google Scholar
  23. 23.
    Pendergrass SA, Verma SS, Holzinger ER et al (2013) Next-generation analysis of cataracts: determining knowledge driven gene-gene interactions using Biofilter, and gene-environment interactions using the PhenX Toolkit. Pacific symposium on biocomputing, pp 147–158Google Scholar
  24. 24.
    Grady BJ, Torstenson ES, McLaren PJ et al (2011) Use of biological knowledge to inform the analysis of gene-gene interactions involved in modulating virologic failure with efavirenz-containing treatment regimens in ART-naïve ACTG clinical trials participants. Pacific symposium on biocomputing, pp 253–264Google Scholar
  25. 25.
    Kira K, Rendell LA (1992) A practical approach to feature selection. In: Proceedings of the ninth international workshop on machine learning, Morgan Kaufmann Publishers, San Francisco, CA, pp 249–256Google Scholar
  26. 26.
    Robnik-Šikonja M, Kononenko I (2003) Theoretical and empirical analysis of ReliefF and RReliefF. Mach Learn 53:23–69CrossRefGoogle Scholar
  27. 27.
    Kononenko I (1994) Estimating attributes: analysis and extensions of RELIEF. Lecture Notes in Computer Science 784:171–182Google Scholar
  28. 28.
    Demšar J, Curk T, Erjavec A et al (2013) Orange: data mining toolbox in python. J Mach Learn Res 14:2349–2353Google Scholar
  29. 29.
    Hall M, Frank E, Holmes G et al (2009) The WEKA data mining software: an update. SIGKDD Explor Newsl 11:10–18CrossRefGoogle Scholar
  30. 30.
    Moore JH, White BC (2007) Tuning ReliefF for genome-wide genetic analysis. In: Marchiori E, Moore JH, Rajapakse JC (eds) Evolutionary computation, machine learning and data mining in bioinformatics. Springer, Berlin, pp 166–175CrossRefGoogle Scholar
  31. 31.
    Hess HF (1986) Evaporative cooling of magnetically trapped and compressed spin-polarized hydrogen. Phys Rev B Condens Matter 34:3476–3479PubMedCrossRefGoogle Scholar
  32. 32.
    McKinney BA, Reif DM, White BC et al (2007) Evaporative cooling feature selection for genotypic data involving interactions. Bioinformatics 23:2113–2120PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    McKinney BA, Reif DM, Rock MT et al (2006) Cytokine expression patterns associated with systemic adverse events following smallpox immunization. J Infect Dis 194:444–453PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Eppstein MJ, Payne JL, White BC et al (2007) Genomic mining for complex disease traits with “random chemistry”. Genet Program Evolvable Mach 8:395–411CrossRefGoogle Scholar
  35. 35.
    Greene CS, Penrod NM, Kiralis J et al (2009) Spatially uniform relieff (SURF) for computationally-efficient filtering of gene-gene interactions. BioData Min 2:5PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Greene CS, Himmelstein DS, Kiralis J et al (2010) The informative extremes: using both nearest and farthest individuals can improve relief algorithms in the domain of human genetics. In: Pizzuti C, Ritchie MD, Giacobini M (eds) Evolutionary computation, machine learning and data mining in bioinformatics. Springer, Berlin, pp 182–193CrossRefGoogle Scholar
  37. 37.
    Granizo-Mackenzie D, Moore JH (2013) Multiple threshold spatially uniform ReliefF for the genetic analysis of complex human diseases. In: Vanneschi L, Bush WS, Giacobini M (eds) Evolutionary computation, machine learning and data mining in bioinformatics. Springer, Berlin, pp 1–10CrossRefGoogle Scholar
  38. 38.
    Stokes ME, Visweswaran S (2012) Application of a spatially-weighted Relief algorithm for ranking genetic predictors of disease. BioData Min 5:20PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Andrew AS, Nelson HH, Kelsey KT et al (2006) Concordance of multiple analytical approaches demonstrates a complex relationship between DNA repair gene SNPs, smoking and bladder cancer susceptibility. Carcinogenesis 27:1030–1037PubMedCrossRefGoogle Scholar
  40. 40.
    Urbanowicz RJ, Andrew AS, Karagas MR et al (2013) Role of genetic heterogeneity and epistasis in bladder cancer susceptibility and outcome: a learning classifier system approach. J Am Med Inform Assoc 20:603–612PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Collins RL, Hu T, Wejse C et al (2013) Multifactor dimensionality reduction reveals a three-locus epistatic interaction associated with susceptibility to pulmonary tuberculosis. BioData Min 6:4PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Olesen R, Wejse C, Velez DR et al (2007) DC-SIGN (CD209), pentraxin 3 and vitamin D receptor gene variants associate with pulmonary tuberculosis risk in West Africans. Genes Immun 8:456–467PubMedCrossRefGoogle Scholar
  43. 43.
    Greene CS, Himmelstein DS, Nelson HH et al (2010) Enabling personal genomics with an explicit test of epistasis. Pacific symposium on biocomputing, pp 327–336Google Scholar
  44. 44.
    Hu T, Chen Y, Kiralis JW et al (2013) An information-gain approach to detecting three-way epistatic interactions in genetic association studies. J Am Med Inform Assoc 20:630–636PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Urbanowicz RJ, Kiralis J, Sinnott-Armstrong NA et al (2012) GAMETES: a fast, direct algorithm for generating pure, strict, epistatic models with random architectures. BioData Min 5:16PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Urbanowicz RJ, Kiralis J, Fisher JM et al (2012) Predicting the difficulty of pure, strict, epistatic models: metrics for simulated model selection. BioData Min 5:15PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Edwards TL, Bush WS, Turner SD et al (2008) Generating linkage disequilibrium patterns in data simulations using genomeSIMLA. In: Proceedings of the 6th European conference on evolutionary computation, machine learning and data mining in bioinformatics, Springer, Berlin, pp 24–35Google Scholar
  49. 49.
    Ritchie MD, Bush WS (2010) Genome simulation approaches for synthesizing in silico datasets for human genomics. Adv Genet 72:1–24PubMedCrossRefGoogle Scholar
  50. 50.
    Dudek SM, Motsinger AA, Velez DR et al (2006) Data simulation software for whole-genome association and other studies in human genetics. Pacific symposium on biocomputing, pp 499–510Google Scholar
  51. 51.
    Moore JH, Hahn LW, Ritchie MD et al (2004) Routine discovery of complex genetic models using genetic algorithms. Appl Soft Comput 4:79–86PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Himmelstein DS, Greene CS, Moore JH (2011) Evolving hard problems: generating human genetics datasets with a complex etiology. BioData Min 4:21PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Dai H, Bhandary M, Becker M et al (2012) Global tests of P-values for multifactor dimensionality reduction models in selection of optimal number of target genes. BioData Min 5:3PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Greene CS, Hill DP, Moore JH (2010) Environmental sensing of expert knowledge in a computational evolution system for complex problem solving in human genetics. In: Riolo R, O’Reilly U-M, McConaghy T (eds) Genetic programming theory and practice, vol VII. Springer, Ann Arbor, MI, pp 19–36Google Scholar
  55. 55.
    Moore JH, Andrews PC, Barney N et al (2008) Development and evaluation of an open-ended computational evolution system for the genetic analysis of susceptibility to common human diseases. In: Marchiori E, Moore JH (eds) Evolutionary computation, machine learning and data mining in bioinformatics. Springer, Berlin, pp 129–140CrossRefGoogle Scholar
  56. 56.
    Moore JH, Greene CS, Andrews PC et al (2009) Does complexity matter? artificial evolution, computational evolution and the genetic analysis of epistasis in common human diseases. In: Genetic programming theory and practice, vol VI. Springer, pp 1–19Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Community and Family MedicineGeisel School of Medicine, DHMCLebanonUSA
  2. 2.Department of GeneticsGeisel School of Medicine, DHMCLebanonUSA

Personalised recommendations