Epistasis pp 301-314 | Cite as

Epistasis Analysis Using Multifactor Dimensionality Reduction

Part of the Methods in Molecular Biology book series (MIMB, volume 1253)


Here we introduce the multifactor dimensionality reduction (MDR) methodology and software package for detecting and characterizing epistasis in genetic association studies. We provide a general overview of the method and then highlight some of the key functions of the open-source MDR software package that is freely distributed. We end with a few examples of published studies of complex human diseases that have used MDR.

Key words

Epistasis Machine learning Association studies Genetic analysis Gene–gene interaction 



This work was supported by National Institutes of Health (NIH) grants AI59694, EY022300, GM103534, GM103506, LM009012, LM010098, and LM011360.


  1. 1.
    Ritchie MD, Hahn LW, Roodi N et al (2001) Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 69:138–147PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Ritchie MD, Hahn LW, Moore JH (2003) Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. Genet Epidemiol 24:150–157PubMedCrossRefGoogle Scholar
  3. 3.
    Hahn LW, Ritchie MD, Moore JH (2003) Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics (Oxford, England) 19:376–382CrossRefGoogle Scholar
  4. 4.
    Hahn LW, Moore JH (2004) Ideal discrimination of discrete clinical endpoints using multilocus genotypes. In Silico Biol 4:183–194PubMedGoogle Scholar
  5. 5.
    Moore JH (2010) Detecting, characterizing, and interpreting nonlinear gene-gene interactions using multifactor dimensionality reduction. Adv Genet 72:101–116PubMedCrossRefGoogle Scholar
  6. 6.
    Moore JH (2004) Computational analysis of gene-gene interactions using multifactor dimensionality reduction. Expert Rev Mol Diagn 4:795–803PubMedCrossRefGoogle Scholar
  7. 7.
    Moore JH (2007) Genome-wide analysis of epistasis using multifactor dimensionality reduction: feature selection and construction in the domain of human genetics. In: Zhu X, Davidson I (eds) Knowledge discovery and data mining: challenges and realities. IGI Global, Hershey, PA, pp 17–30CrossRefGoogle Scholar
  8. 8.
    Moore JH, Gilbert JC, Tsai C-T et al (2006) A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. J Theor Biol 241:252–261PubMedCrossRefGoogle Scholar
  9. 9.
    Michalski RS (1983) A theory and methodology of inductive learning. Artif Intel 20:111–161CrossRefGoogle Scholar
  10. 10.
    Velez DR, White BC, Motsinger AA et al (2007) A balanced accuracy function for epistasis modeling in imbalanced datasets using multifactor dimensionality reduction. Genet Epidemiol 31:306–315PubMedCrossRefGoogle Scholar
  11. 11.
    Pattin KA, White BC, Barney N et al (2009) A computationally efficient hypothesis testing method for epistasis analysis using multifactor dimensionality reduction. Genet Epidemiol 33:87–94PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Cordell HJ (2009) Detecting gene-gene interactions that underlie human diseases. Nat Rev Genet 10:392–404PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Moore JH (2003) The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Hum Hered 56:73–82PubMedCrossRefGoogle Scholar
  14. 14.
    Moore JH (2005) A global view of epistasis. Nat Genet 37:13–14PubMedCrossRefGoogle Scholar
  15. 15.
    Moore JH, Williams SM (2005) Traversing the conceptual divide between biological and statistical epistasis: systems biology and a more modern synthesis. Bioessays 27:637–646PubMedCrossRefGoogle Scholar
  16. 16.
    Moore JH, Williams SM (2009) Epistasis and its implications for personal genetics. Am J Hum Genet 85:309–320PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Moore JH, Asselbergs FW, Williams SM (2010) Bioinformatics challenges for genome-wide association studies. Bioinformatics (Oxford, England) 26:445–455CrossRefGoogle Scholar
  18. 18.
    Cordell HJ (2002) Epistasis: what it means, what it doesn’t mean, and statistical methods to detect it in humans. Hum Mol Genet 11:2463–2468PubMedCrossRefGoogle Scholar
  19. 19.
    Cowper-Sal lari R, Cole MD, Karagas MR et al (2011) Layers of epistasis: genome-wide regulatory networks and network approaches to genome-wide association studies. Wiley Interdiscip Rev Syst Biol Med 3:513–526PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Tyler AL, Asselbergs FW, Williams SM et al (2009) Shadows of complexity: what biological networks reveal about epistasis and pleiotropy. Bioessays 31:220–227PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Phillips PC (2008) Epistasis–the essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet 9:855–867PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Phillips PC (1998) The language of gene interaction. Genetics 149:1167–1171PubMedCentralPubMedGoogle Scholar
  23. 23.
    Coffey CS, Hebert PR, Ritchie MD et al (2004) An application of conditional logistic regression and multifactor dimensionality reduction for detecting gene-gene interactions on risk of myocardial infarction: the importance of model validation. BMC Bioinformatics 5:49PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Greene CS, Himmelstein DS, Nelson HH et al (2010) Enabling personal genomics with an explicit test of epistasis, Pacific Symposium on Biocomputing. Pac Symp Biocomput:327–336Google Scholar
  25. 25.
    Lou X-Y, Chen G-B, Yan L et al (2007) A generalized combinatorial approach for detecting gene-by-gene and gene-by-environment interactions with application to nicotine dependence. Am J Hum Genet 80:1125–1137PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Calle ML, Urrea V, Malats N et al (2010) mbmdr: an R package for exploring gene-gene interactions associated with binary or quantitative traits. Bioinformatics (Oxford, England) 26:2198–2199CrossRefGoogle Scholar
  27. 27.
    Gui J, Andrew AS, Andrews P et al (2011) A robust multifactor dimensionality reduction method for detecting gene-gene interactions with application to the genetic analysis of bladder cancer susceptibility. Ann Hum Genet 75:20–28PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Gui J, Andrew AS, Andrews P et al (2010) A simple and computationally efficient sampling approach to covariate adjustment for multifactor dimensionality reduction analysis of epistasis. Hum Hered 70:219–225PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Dai H, Charnigo RJ, Becker ML et al (2013) Risk score modeling of multiple gene to gene interactions using aggregated-multifactor dimensionality reduction. BioData Min 6:1PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Martin ER, Ritchie MD, Hahn L et al (2006) A novel method to identify gene-gene effects in nuclear families: the MDR-PDT. Genet Epidemiol 30:111–123PubMedCrossRefGoogle Scholar
  31. 31.
    Cattaert T, Urrea V, Naj AC et al (2010) FAM-MDR: a flexible family-based multifactor dimensionality reduction technique to detect epistasis using related individuals. PLoS One 5:e10304PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Gui J, Moore JH, Kelsey KT et al (2011) A novel survival multifactor dimensionality reduction method for detecting gene-gene interactions with application to bladder cancer prognosis. Hum Genet 129:101–110PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Beretta L, Santaniello A, van Riel PLCM et al (2010) Survival dimensionality reduction (SDR): development and clinical application of an innovative approach to detect epistasis in presence of right-censored data. BMC Bioinformatics 11:416PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Greene CS, Sinnott-Armstrong NA, Himmelstein DS et al (2010) Multifactor dimensionality reduction for graphics processing units enables genome-wide testing of epistasis in sporadic ALS. Bioinformatics (Oxford, England) 26:694–695CrossRefGoogle Scholar
  35. 35.
    Sinnott-Armstrong NA, Greene CS, Cancare F et al (2009) Accelerating epistasis analysis in human genetics with consumer graphics hardware. BMC Res Notes 2:149PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Gui J, Moore JH, Williams SM et al (2013) A simple and computationally efficient approach to multifactor dimensionality reduction analysis of gene-gene interactions for quantitative traits. PLoS One 8:e66545PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Kim NC, Andrews PC, Asselbergs FW et al (2012) Gene ontology analysis of pairwise genetic associations in two genome-wide studies of sporadic ALS. BioData Min 5:9PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Wilke RA, Reif DM, Moore JH (2005) Combinatorial pharmacogenetics. Nat Rev Drug Discov 4:911–918PubMedCrossRefGoogle Scholar
  39. 39.
    Wilke RA, Mareedu RK, Moore JH (2008) The pathway less traveled: moving from candidate genes to candidate pathways in the analysis of genome-wide data from large scale pharmacogenetic association studies. Curr Pharmacogenomics PersonMed 6:150–159CrossRefGoogle Scholar
  40. 40.
    Andrew AS, Nelson HH, Kelsey KT et al (2006) Concordance of multiple analytical approaches demonstrates a complex relationship between DNA repair gene SNPs, smoking and bladder cancer susceptibility. Carcinogenesis 27:1030–1037PubMedCrossRefGoogle Scholar
  41. 41.
    Andrew AS, Karagas MR, Nelson HH et al (2008) DNA repair polymorphisms modify bladder cancer risk: a multi-factor analytic strategy. Hum Hered 65:105–118PubMedCrossRefGoogle Scholar
  42. 42.
    Winham SJ, Motsinger-Reif AA (2011) An R package implementation of multifactor dimensionality reduction. BioData Min 4:24PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Moore JH (2003) Cross validation consistency for the assessment of genetic programming results in microarray studies. In: Cagnoni S, Johnson CG, Cardalda JJR et al (eds) Applications of evolutionary computing. Springer, Berlin, pp 99–106CrossRefGoogle Scholar
  44. 44.
    Winham SJ, Slater AJ, Motsinger-Reif AA (2010) A comparison of internal validation techniques for multifactor dimensionality reduction. BMC Bioinformatics 11:394PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Bush WS, Edwards TL, Dudek SM et al (2008) Alternative contingency table measures improve the power and detection of multifactor dimensionality reduction. BMC Bioinformatics 9:238PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Fan R, Zhong M, Wang S et al (2011) Entropy-based information gain approaches to detect and to characterize gene-gene and gene-environment interactions/correlations of complex diseases. Genet Epidemiol 35:706–721PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Hu T, Sinnott-Armstrong NA, Kiralis JW et al (2011) Characterizing genetic interactions in human disease association studies using statistical epistasis networks. BMC Bioinformatics 12:364PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Hu T, Andrew AS, Karagas MR et al (2013) Statistical epistasis networks reduce the computational complexity of searching three-locus genetic models, Pacific Symposium on Biocomputing. Pac Symp Biocomput:397–408Google Scholar
  49. 49.
    Hu T, Chen Y, Kiralis JW et al (2013) ViSEN: methodology and software for visualization of statistical epistasis networks. Genet Epidemiol 37:283–285PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Wong AK, Park CY, Greene CS et al (2012) IMP: a multi-species functional genomics portal for integration, visualization and prediction of protein functions and networks. Nucleic Acids Res 40:W484–W490PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Gaertner BE, Parmenter MD, Rockman MV et al (2012) More than the sum of its parts: a complex epistatic network underlies natural variation in thermal preference behavior in Caenorhabditis elegans. Genetics 192:1533–1542PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Huang W, Richards S, Carbone MA et al (2012) Epistasis dominates the genetic architecture of Drosophila quantitative traits. Proc Natl Acad Sci U S A 109:15553–15559PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Lee J-H, Moore JH, Park S-W et al (2008) Genetic interactions model among Eotaxin gene polymorphisms in asthma. J Hum Genet 53:867–875PubMedCrossRefGoogle Scholar
  54. 54.
    Bush WS, Dudek SM, Ritchie MD (2006) Parallel multifactor dimensionality reduction: a tool for the large-scale analysis of gene-gene interactions. Bioinformatics (Oxford, England) 22:2173–2174CrossRefGoogle Scholar
  55. 55.
    Payne JL, Sinnott-Armstrong NA, Moore JH (2010) Exploiting graphics processing units for computational biology and bioinformatics. Interdiscip Sci 2:213–220PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Moore JH, White BC (2007) Tuning ReliefF for genome-wide genetic analysis. In: Marchiori E, Moore JH, Rajapakse JC (eds) Evolutionary computation, machine learning and data mining in bioinformatics. Springer, Berlin, pp 166–175CrossRefGoogle Scholar
  57. 57.
    Greene CS, Penrod NM, Kiralis J et al (2009) Spatially uniform relieff (SURF) for computationally-efficient filtering of gene-gene interactions. BioData Min 2:5PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Greene CS, Himmelstein DS, Kiralis J et al (2010) The informative extremes: using both nearest and farthest individuals can improve relief algorithms in the domain of human genetics. In: Pizzuti C, Ritchie MD, Giacobini M (eds) Evolutionary computation, machine learning and data mining in bioinformatics. Springer, Berlin, pp 182–193CrossRefGoogle Scholar
  59. 59.
    Pan Q, Hu T, Moore JH (2013) Epistasis, complexity, and multifactor dimensionality reduction. Methods Mol Biol (Clifton, NJ) 1019:465–477CrossRefGoogle Scholar
  60. 60.
    Dai H, Bhandary M, Becker M et al (2012) Global tests of P-values for multifactor dimensionality reduction models in selection of optimal number of target genes. BioData Min 5:3PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Bush WS, Dudek SM, Ritchie MD (2009) Biofilter: a knowledge-integration system for the multi-locus analysis of genome-wide association studies, Pacific Symposium on Biocomputing. Pac Symp Biocomput:368–379Google Scholar
  62. 62.
    Greene CS, White BC, Moore JH (2008) Ant colony optimization for genome-wide genetic analysis. In: Dorigo M, Birattari M, Blum C et al (eds) Ant colony optimization and swarm intelligence. Springer, Berlin, pp 37–47CrossRefGoogle Scholar
  63. 63.
    Gilmore JM, Greene CS, Andrews PC et al (2011) An analysis of new expert knowledge scaling methods for biologically inspired computing. In: Kampis G, Karsai I, Szathmáry E (eds) Advances in artificial life. Darwin meets von Neumann. Springer, Berlin, pp 286–293CrossRefGoogle Scholar
  64. 64.
    Greene CS, Penrod NM, Williams SM et al (2009) Failure to replicate a genetic association may provide important clues about genetic architecture. PLoS One 4:e5639PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Genetics, Geisel School of MedicineDHMCLebanonUSA
  2. 2.Department of Community and Family Medicine, Geisel School of MedicineDHMCLebanonUSA

Personalised recommendations