Cell Volume Regulation Monitored with Combined Epifluorescence and Digital Holographic Microscopy

  • Nicolas Pavillon
  • Pierre Marquet
Part of the Methods in Molecular Biology book series (MIMB, volume 1254)


Quantitative phase imaging emerged recently as a valuable tool for cell observation, by enabling label-free imaging through the intrinsic phase-contrast provided by transparent living cells , thus greatly simplifying observation protocols. The quantitative phase signal , unlike the one provided by the widely used phase-contrast microscope , can be related to relevant biological indicators including dry mass , cell volume regulation or transmembrane water movements . Here, we present quantitative phase imaging coupled with live fluorescence , making it possible to follow the phase signal in time to monitor the cell volume regulation , an early indicator of cell viability , along with specific information such as intracellular Ca2+ imaging with Fura-2 ratiometric fluorescence .

Key words

Microscopy Quantitative phaseimaging Digital holography Fluorescence Ca2+ imaging Cell biology Cell volume regulation 



This research was supported by the Swiss National Science Foundation grant #CR32I3-132993 and by the Commission for Technology and Innovation (CTI/KTI) project #9389.1.


  1. 1.
    Zernike F (1955) How I discovered phase contrast. Science 121:345–349PubMedCrossRefGoogle Scholar
  2. 2.
    Allen R, David G, Nomarski G (1969) The Zeiss-Nomarski differential interference equipment for transmitted-light microscopy. Z Wiss Mikrosk 69:193–221PubMedGoogle Scholar
  3. 3.
    Rappaz B, Marquet P, Cuche E et al (2005) Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy. Opt Express 13:9361–9373PubMedCrossRefGoogle Scholar
  4. 4.
    Girshovitz P, Shaked NT (2012) Generalized cell morphological parameters based on interferometric phase microscopy and their application to cell life cycle characterization. Biomed Opt Express 3:1757–1773PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Rappaz B, Cano E, Colomb T et al (2009) Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy. J Biomed Opt 14:034049PubMedCrossRefGoogle Scholar
  6. 6.
    Mir M, Wang Z, Shen Z et al (2011) Optical measurement of cycle-dependent cell growth. Proc Natl Acad Sci U S A 108:13124–13129PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Pavillon N, Kühn J, Moratal C et al (2012) Early cell death detection with digital holographic nicroscopy. PLoS ONE 7:e30912PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Khmaladze A, Matz RL, Epstein T et al (2012) Cell volume changes during apoptosis monitored in real time using digital holographic microscopy. J Struct Biol 178:270–278PubMedCrossRefGoogle Scholar
  9. 9.
    Pavillon N, Benke A, Boss D et al (2010) Cell morphology and intracellular ionic homeostasis explored with a multimodal approach combining epifluorescence and digital holographic microscopy. J Biophotonics 3:432–436PubMedCrossRefGoogle Scholar
  10. 10.
    Grynkiewicz G, Poenie M, Tsien R (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450PubMedGoogle Scholar
  11. 11.
    Tsien RY (1989) Fluorescent probes of cell signaling. Annu Rev Neurosci 12:227–253PubMedCrossRefGoogle Scholar
  12. 12.
    Kreis T (2005) Handbook of holographic interferometry. Wiley-VCH, Weinheim, GermanyGoogle Scholar
  13. 13.
    Popescu G (2011) Quantitative phase imaging of cells and tissues. McGraw-Hill, New York, NYGoogle Scholar
  14. 14.
    Magistretti P, Marquet P, Depeursinge C (2013) Neural cell dynamics explored with digital holographic microscopy. Annu Rev Biomed Eng 15:407–431PubMedCrossRefGoogle Scholar
  15. 15.
    Cuche E, Marquet P, Depeursinge C (1999) Simultaneous amplitude–contrast and quantitative phase–contrast microscopy by numerical reconstruction of Fresnel off–axis holograms. Appl Opt 38:6994–7001PubMedCrossRefGoogle Scholar
  16. 16.
    Marquet P, Rappaz B, Magistretti P et al (2005) Digital holographic microscopy: A noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt Lett 30:468–470PubMedCrossRefGoogle Scholar
  17. 17.
    Montfort F, Charrière F, Colomb T et al (2006) Purely numerical compensation for microscope objective phase curvature in digital holographic microscopy: Influence of digital phase mask position. J Opt Soc Am A 23:2944–2953CrossRefGoogle Scholar
  18. 18.
    Colomb T, Kühn J, Charrière F et al (2006) Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram. Opt Express 14:4300–4306PubMedCrossRefGoogle Scholar
  19. 19.
    Jourdain P, Pavillon N, Moratal C et al (2011) Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the co-transporters KCC2 and NKCC1: a digital holographic microscopy study. J Neurosci 31:11846–11854PubMedCrossRefGoogle Scholar
  20. 20.
    Hoffmann E, Lambert I, Pedersen S (2009) Physiology of cell volume regulation in vertebrates. Physiol Rev 89:193–277PubMedCrossRefGoogle Scholar
  21. 21.
    Chen M, Sepramaniam S, Armugam A et al (2008) Water and ion channels: crucial in the initiation and progression of apoptosis in central nervous system? Curr Neuropharmacol 6:102–116CrossRefGoogle Scholar
  22. 22.
    Tsien RY (1981) A non-disruptive technique for loading calcium buffers and indicators into cells. Nature 290:527–528PubMedCrossRefGoogle Scholar
  23. 23.
    Pavillon N (2011) Cellular dynamics and three-dimensional refractive index distribution studied with quantitative phase imaging. Ph.D. thesis no 5100, Ecole Polytechnique Fédérale de LausanneGoogle Scholar
  24. 24.
    Stout A, Raphael H, Kanterewicz B et al (1998) Glutamate-induced neuron death requires mitochondrial calcium uptake. Nat Neurosci 1:366–373PubMedCrossRefGoogle Scholar
  25. 25.
    Colomb T, Montfort F, Kühn J et al (2006) Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy. J Opt Soc Am A 23:3177–3190CrossRefGoogle Scholar
  26. 26.
    Langehanenberg P, Kemper B, Dirksen D et al (2008) Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging. Appl Opt 47:D176–D182PubMedCrossRefGoogle Scholar
  27. 27.
    Takajo H, Takahashi T (1988) Noniterative method for obtaining the exact solution for the normal equation in least-squares phase estimation from the phase difference. J Opt Soc Am A 5:1818–1827CrossRefGoogle Scholar
  28. 28.
    Su X, Chen W (2004) Reliability-guided phase unwrapping algorithm: a review. Optic Laser Eng 42:245–261CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Biophotonics Laboratory, Immunology Frontier Research Center (IFReC)Osaka UniversitySuitaJapan
  2. 2.Microvision and Microdiagnostics Group (MVD)STI, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  3. 3.Département de Psychiatrie, Centre de Neurosciences PsychiatriquesCentre Hospitalier Universitaire Vaudois (CHUV)Prilly/LausanneSwitzerland
  4. 4.Brain Mind Institute (BMI)Ecole Polytechnique Fédérale Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations