Advertisement

Recombinant Expression and Purification of “Virus-like” Bacterial Encapsulin Protein Cages

  • W. Frederik Rurup
  • Jeroen J. L. M. Cornelissen
  • Melissa S. T. KoayEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1252)

Abstract

Ultracentrifugation, particularly the use of sucrose or cesium chloride density gradients, is a highly reliable and efficient technique for the purification of virus-like particles and protein cages. Since virus-like particles and protein cages have a unique size compared to cellular macromolecules and organelles, the rate of migration can be used as a tool for purification. Here we describe a detailed protocol for the purification of recently discovered virus-like assemblies called bacterial encapsulins from Thermotoga maritima and Brevibacterium linens.

Key words

Virus-like assemblies Protein cages Virus purification Bacterial encapsulins Nanotechnology 

References

  1. 1.
    Liu Z, Qiao J, Niu Z, Wang Q (2012) Natural supramolecular building blocks: from virus coat proteins to viral nanoparticles. Chem Soc Rev 41:6178–6194PubMedCrossRefGoogle Scholar
  2. 2.
    Liu X, Theil EC (2004) Ferritin reactions: direct identification of the site for the diferric peroxide reaction intermediate. Proc Natl Acad Sci U S A 101:8557–8562PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Lawrence JE, Steward GF (2010) Purification of viruses by centrifugation. In: Wilhelm SW, Weinbauer MG, Suttle CA (eds) Manual of aquatic viral ecology. American Society of Limnology and Oceanography, Waco, TX, pp 166–181CrossRefGoogle Scholar
  4. 4.
    Kramer RM, Li C, Carter DC, Stone MO, Naik RR (2004) Engineered protein cages for nanomaterial synthesis. J Am Chem Soc 126:13282–13286PubMedCrossRefGoogle Scholar
  5. 5.
    Henry M, Debarbieux L (2012) Tools from viruses: bacteriophage successes and beyond. Virology 434:151–161PubMedCrossRefGoogle Scholar
  6. 6.
    Frank S, Lawrence AD, Prentice MB, Warren MJ (2013) Bacterial microcompartments moving into a synthetic biological world. J Biotechnol 163:273–279PubMedCrossRefGoogle Scholar
  7. 7.
    Choudhary S, Quin MB, Sanders MA, Johnson ET, Schmidt-Dannert C (2012) Engineered protein nano-compartments for targeted enzyme localization. PLoS One 7:e33342PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Chen AH, Silver PA (2012) Designing biological compartmentalization. Trends Cell Biol 22:662–670PubMedCrossRefGoogle Scholar
  9. 9.
    Banyard SH, Stammers DK, Harrison PM (1978) Electron density map of apoferritin at 2.8-A resolution. Nature 271:282–284PubMedCrossRefGoogle Scholar
  10. 10.
    Vriezema DM, Comellas Aragones M, Elemans JA, Cornelissen JJLM, Rowan AE, Nolte RJ (2005) Self-assembled nanoreactors. Chem Rev 105:1445–1489PubMedCrossRefGoogle Scholar
  11. 11.
    Uchida M, Klem MT, Allen M, Suci P, Flenniken M, Gillitzer E, Varpness Z, Liepold LO, Young M, Douglas T (2007) Biological containers: protein cages as multifunctional nanoplatforms. Adv Mater 19:1025–1042CrossRefGoogle Scholar
  12. 12.
    Douglas T, Young M (2006) Viruses: making friends with old foes. Science 312:873–875PubMedCrossRefGoogle Scholar
  13. 13.
    Rahmanpour R, Bugg TDH (2013) Assembly in vitro of Rhodococcus jostii RHA1 encapsulin and peroxidase DypB to form a nano-compartment. FEBS J 280:2097–2104PubMedCrossRefGoogle Scholar
  14. 14.
    Sutter M, Boehringer D, Gutmann S, Gunther S, Prangishvili D, Loessner MJ, Stetter KO, Weber-Ban E, Ban N (2008) Structural basis of enzyme encapsulation into a bacterial nanocompartment. Nat Struct Mol Biol 15:939–947PubMedCrossRefGoogle Scholar
  15. 15.
    Tsai Y, Sawaya MR, Cannon GC, Cai F, Williams EB, Heinhorst S, Kerfeld CA, Yeates TO (2007) Structural analysis of CsoS1A and the protein shell of the Halothiobacillus neapolitanus carboxysome. PLoS Biol 5:e144PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Tanaka S, Kerfeld C, Sawaya M, Cai F, Heinhorst S, Cannon G, Yeates T (2008) Atomic-level models of the bacterial carboxysome shell. Science 319:1083–1086PubMedCrossRefGoogle Scholar
  17. 17.
    Fan C, Cheng S, Liu Y, Escobar C, Crowley C, Jefferson R, Yeates T, Bobik T (2010) Short N-terminal sequences package proteins into bacterial microcompartments. Proc Natl Acad Sci U S A 107:7509–7514PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Cheng SQ, Liu Y, Crowley CS, Yeates TO, Bobik TA (2008) Bacterial microcompartments: their properties and paradoxes. Bioessays 30:1084–1095PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Cannon G, Bradburne C, Aldrich H, Baker S, Heinhorst S, Shively J (2001) Microcompartments in prokaryotes: carboxysomes and related polyhedra. Appl Environ Microbiol 67:5351–5361PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Usselman RJ, Walter ED, Willits D, Douglas T, Young M, Singel DJ (2011) Monitoring structural transitions in icosahedral virus protein cages by site-directed spin labeling. J Am Chem Soc 133:4156–4159PubMedCrossRefGoogle Scholar
  21. 21.
    Kang S, Suci PA, Broomell CC, Iwahori K, Kobayashi M, Yamashita I, Young M, Douglas T (2009) Janus-like protein cages. Spatially controlled dual-functional surface modifications of protein cages. Nano Lett 9:2360–2366PubMedCrossRefGoogle Scholar
  22. 22.
    Minten IJ, Hendriks LJ, Nolte RJ, Cornelissen JJ (2009) Controlled encapsulation of multiple proteins in virus capsids. J Am Chem Soc 131:17771–17773PubMedCrossRefGoogle Scholar
  23. 23.
    Lucon J, Qazi S, Uchida M, Bedwell GJ, LaFrance B, Prevelige PE, Douglas T (2012) Use of the interior cavity of the P22 capsid for site-specific initiation of atom-transfer radical polymerization with high-density cargo loading. Nat Chem 4:781–788PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Glasgow JE, Capehart SL, Francis MB, Tullman-Ercek D (2012) Osmolyte-mediated encapsulation of proteins inside MS2 viral capsids. ACS Nano 6:8658–8664PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Sutter M (2008) Structural basis of enzyme encapsulation into a bacterial nanocompartment. PhD dissertationGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • W. Frederik Rurup
    • 1
  • Jeroen J. L. M. Cornelissen
    • 1
  • Melissa S. T. Koay
    • 1
    • 2
    Email author
  1. 1.Laboratory for Biomolecular Nanotechnology, MESA + Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands
  2. 2.Laboratory for Biomolecular Nanotechnology, MESA+ Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations