Advertisement

The Physical Basis of Total Internal Reflection Fluorescence (TIRF) Microscopy and Its Cellular Applications

  • Natalie S. Poulter
  • William T. E. Pitkeathly
  • Philip J. Smith
  • Joshua Z. RappoportEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1251)

Abstract

Total internal reflection fluorescence (TIRF) microscopy has gained popularity in recent years among cell biologists due to its ability to clearly visualize events that occur at the adherent plasma membrane of cells. TIRF microscopy systems are now commercially available from nearly all microscope suppliers. This review aims to give the reader an introduction to the physical basis of TIRF and considerations that need to be made when purchasing a commercial system. We explain how TIRF can be combined with other microscopy modalities and describe how to use TIRF to study processes such as endocytosis, exocytosis, and focal adhesion dynamics. Finally, we provide a step-by-step guide to imaging and analyzing focal adhesion dynamics in a migrating cell using TIRF microscopy.

Key words

Total internal reflection fluorescence (TIRF) Endocytosis Exocytosis Focal adhesions 

Notes

Acknowledgments

The authors would like to acknowledge funding through BBSRC Project grant BB/H002308/1. WTEP and PJS are funded through the Physical Sciences of Imaging for the Biomedical Sciences (PSIBS) Doctoral Training Centre, and NSP is funded through British Heart Foundation New Horizons grant NH/11/6/29061. The TIRF microscope used in this research was obtained through Birmingham Science City Translational Medicine Clinical Research and Infrastructure Trials Platform, with support from Advantage West Midlands (AWM).

References

  1. 1.
    Mattheyses AL, Simon SM, Rappoport JZ (2010) Imaging with total internal reflection fluorescence microscopy for the cell biologist. J Cell Sci 123:3621–3628PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Axelrod D (2001) Total internal reflection fluorescence microscopy in cell biology. Traffic 2:764–774PubMedCrossRefGoogle Scholar
  3. 3.
    Axelrod D (2008) Total internal reflection fluorescence microscopy. Methods Cell Biol 89:169–221PubMedCrossRefGoogle Scholar
  4. 4.
    Rappoport JZ, Simon SM (2003) Real-time analysis of clathrin-mediated endocytosis during cell migration. J Cell Sci 116:847–855PubMedCrossRefGoogle Scholar
  5. 5.
    Rappoport JZ, Benmerah A, Simon SM (2005) Analysis of the AP-2 adaptor complex and cargo during clathrin-mediated endocytosis. Traffic 6:539–547PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Merrifield CJ, Perrais D, Zenisek D (2005) Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells. Cell 121:593–606PubMedCrossRefGoogle Scholar
  7. 7.
    Merrifield CJ, Feldman ME, Wan L et al (2002) Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat Cell Biol 4:691–698PubMedCrossRefGoogle Scholar
  8. 8.
    Fix M, Melia TJ, Jaiswal JK et al (2004) Imaging single membrane fusion events mediated by SNARE proteins. Proc Natl Acad Sci U S A 101:7311–7316PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Akopova I, Tatur S, Grygorczyk M et al (2011) Imaging exocytosis of ATP-containing vesicles with TIRF microscopy in lung epithelial A549 cells. Purinerg Signal 8:59–70CrossRefGoogle Scholar
  10. 10.
    Grigoriev I, Splinter D, Keijzer N et al (2007) Rab6 regulates transport and targeting of exocytotic carriers. Dev Cell 13:305–314PubMedCrossRefGoogle Scholar
  11. 11.
    Berginski ME, Vitriol EA, Hahn KM et al (2011) High-resolution quantification of focal adhesion spatiotemporal dynamics in living cells. PLoS One 6:e22025PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Partridge MA, Marcantonio EE (2006) Initiation of attachment and generation of mature focal adhesions by integrin-containing filopodia in cell spreading. Mol Biol Cell 17:4237–4248PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Fletcher SJ, Poulter NS, Haining EJ et al (2011) Clathrin‐mediated endocytosis regulates occludin, and not focal adhesion, distribution during epithelial wound healing. Biol Cell 104:238–256CrossRefGoogle Scholar
  14. 14.
    Lock FE, Ryan KR, Poulter NS et al (2012) Differential regulation of adhesion complex turnover by ROCK1 and ROCK2. PLoS One 7:e31423PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Manneville JB (2006) Use of TIRF microscopy to visualize actin and microtubules in migrating cells. Meth Enzymol 406:520–532PubMedCrossRefGoogle Scholar
  16. 16.
    Webb RL, Rozov O, Watkins SC et al (2009) Using total internal reflection fluorescence (TIRF) microscopy to visualize cortical actin and microtubules in the drosophila syncytial embryo. Dev Dynam 238:2622–2632CrossRefGoogle Scholar
  17. 17.
    Dixit R, Ross JL (2010) Studying plus-end tracking at single molecule resolution using TIRF microscopy. Method Cell Biol 95:543–554CrossRefGoogle Scholar
  18. 18.
    Gardner MK, Charlebois BD, Jánosi IM et al (2011) Rapid microtubule self-assembly kinetics. Cell 146:582–592PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Graham-Smith SF, King TA (2000) Optics and photonics: an introduction. Wiley, Chichester, UKGoogle Scholar
  20. 20.
    Millis BA (2012) Evanescent-wave field imaging: an introduction to total internal reflection fluorescence microscopy. Methods Mol Biol 823:295–309PubMedCrossRefGoogle Scholar
  21. 21.
    Rappoport JZ, Simon SM (2009) Endocytic trafficking of activated EGFR is AP-2 dependent and occurs through preformed clathrin spots. J Cell Sci 122:1301–1305PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Born M, Wolf E, Bhatia AB (1999) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Cambridge Univ Press, Cambridge, UKCrossRefGoogle Scholar
  23. 23.
    Anantharam A, Onoa B, Edwards RH et al (2010) Localized topological changes of the plasma membrane upon exocytosis visualized by polarized TIRFM. J Cell Biol 188:415–428PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Sund SE, Swanson JA, Axelrod D (1999) Cell membrane orientation visualized by polarized total internal reflection fluorescence. Biophys J 77:2266–2283PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Axelrod D (1981) Cell-substrate contacts illuminated by total internal reflection fluorescence. J Cell Biol 89:141–145PubMedCrossRefGoogle Scholar
  26. 26.
    Stock K, Sailer R, Strauss W et al (2003) Variable‐angle total internal reflection fluorescence microscopy (VA‐TIRFM): realization and application of a compact illumination device. J Microsc 211:19–29PubMedCrossRefGoogle Scholar
  27. 27.
    Fish KN (2009) Total internal reflection fluorescence (TIRF) microscopy. Curr Protoc Cytom Chapter 12, Unit 12.18Google Scholar
  28. 28.
    Olveczky BP, Periasamy N, Verkman A (1997) Mapping fluorophore distributions in three dimensions by quantitative multiple angle-total internal reflection fluorescence microscopy. Biophys J 73:2836–2847PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Oheim M, Loerke D, Chow RH et al (1999) Evanescent-wave microscopy: a new tool to gain insight into the control of transmitter release. Philos T Roy Soc B 354:307–318CrossRefGoogle Scholar
  30. 30.
    Rohrbach A (2000) Observing secretory granules with a multiangle evanescent wave microscope. Biophys J 78:2641–2654PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Loerke D, Stühmer W, Oheim M (2002) Quantifying axial secretory-granule motion with variable-angle evanescent-field excitation. J Neurosci Methods 119:65–73PubMedCrossRefGoogle Scholar
  32. 32.
    Weisswange I, Bretschneider T, Anderson KI (2005) The leading edge is a lipid diffusion barrier. J Cell Sci 118:4375–4380PubMedCrossRefGoogle Scholar
  33. 33.
    Millán J, Hewlett L, Glyn M et al (2006) Lymphocyte transcellular migration occurs through recruitment of endothelial ICAM-1 to caveola-and F-actin-rich domains. Nat Cell Biol 8:113–123PubMedCrossRefGoogle Scholar
  34. 34.
    Saffarian S, Kirchhausen T (2008) Differential evanescence nanometry: live-cell fluorescence measurements with 10-nm axial resolution on the plasma membrane. Biophys J 94:2333–2342PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Pitkeathly WT, Poulter NS, Claridge E et al (2011) Auto-align – multi-modality fluorescence microscopy image co-registration. Traffic 13:204–217PubMedCrossRefGoogle Scholar
  36. 36.
    Mattheyses AL, Axelrod D (2006) Direct measurement of the evanescent field profile produced by objective-based total internal reflection fluorescence. J Biomed Opt 11:014006PubMedCrossRefGoogle Scholar
  37. 37.
    Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78:857–902PubMedCrossRefGoogle Scholar
  38. 38.
    Damke H (1996) Dynamin and receptor-mediated endocytosis. FEBS Lett 389:48–51PubMedCrossRefGoogle Scholar
  39. 39.
    Roth MG (2005) Clathrin-mediated endocytosis before fluorescent proteins. Nat Rev Mol Cell Biol 7:63–68CrossRefGoogle Scholar
  40. 40.
    Gaidarov I, Santini F, Warren RA et al (1999) Spatial control of coated-pit dynamics in living cells. Nat Cell Biol 1:1–7PubMedCrossRefGoogle Scholar
  41. 41.
    Cao H, Garcia F, McNiven MA (1998) Differential distribution of dynamin isoforms in mammalian cells. Mol Biol Cell 9:2595–2609PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Rappoport JZ, Taha BW, Lemeer S et al (2003) The AP-2 complex is excluded from the dynamic population of plasma membrane-associated clathrin. J Biol Chem 278:47357–47360PubMedCrossRefGoogle Scholar
  43. 43.
    Yarar D, Waterman-Storer CM, Schmid SL (2005) A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis. Mol Biol Cell 16:964–975PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Rappoport JZ (2008) Focusing on clathrin-mediated endocytosis. Biochem J 412:415–423PubMedCrossRefGoogle Scholar
  45. 45.
    Soulet F, Yarar D, Leonard M et al (2005) SNX9 regulates dynamin assembly and is required for efficient clathrin-mediated endocytosis. Mol Biol Cell 16:2058–2067PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Lee D, Wu X, Eisenberg E et al (2006) Recruitment dynamics of GAK and auxilin to clathrin-coated pits during endocytosis. J Cell Sci 119:3502–3512PubMedCrossRefGoogle Scholar
  47. 47.
    Jahn R, Südhof TC (1999) Membrane fusion and exocytosis. Annu Rev Biochem 68:863–911PubMedCrossRefGoogle Scholar
  48. 48.
    Simon SM (2009) Partial internal reflections on total internal reflection fluorescent microscopy. Trends Cell Biol 19:661–668PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Jaiswal JK, Fix M, Takano T et al (2007) Resolving vesicle fusion from lysis to monitor calcium-triggered lysosomal exocytosis in astrocytes. Proc Natl Acad Sci U S A 104:14151–14156PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Schmoranzer J, Goulian M, Axelrod D et al (2000) Imaging constitutive exocytosis with total internal reflection fluorescence microscopy. J Cell Biol 149:23–32PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Burridge K, Fath K, Kelly T et al (1988) Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu Rev Cell Biol 4:487–525PubMedCrossRefGoogle Scholar
  52. 52.
    Burridge K, Chrzanowska-Wodnicka M (1996) Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol 12:463–519PubMedCrossRefGoogle Scholar
  53. 53.
    Webb DJ, Parsons JT, Horwitz AF (2002) Adhesion assembly, disassembly and turnover in migrating cells-over and over and over again. Nat Cell Biol 4:E97–E100PubMedCrossRefGoogle Scholar
  54. 54.
    Ezratty EJ, Bertaux C, Marcantonio EE et al (2009) Clathrin mediates integrin endocytosis for focal adhesion disassembly in migrating cells. J Cell Biol 187:733–747PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Natalie S. Poulter
    • 4
  • William T. E. Pitkeathly
    • 2
  • Philip J. Smith
    • 2
  • Joshua Z. Rappoport
    • 1
    • 3
    Email author
  1. 1.School of BiosciencesUniversity of BirminghamBirminghamUK
  2. 2.Physical Sciences of Imaging for the Biomedical Sciences (PSIBS) Doctoral Training CentreUniversity of BirminghamBirminghamUK
  3. 3.Center for Advanced Microscopy and the Nikon Imaging Center at Northwestern UniversityNorthwestern University Feinberg School of MedicineChicagoUSA
  4. 4.Centre for Cardiovascular Sciences, Institute of Biomedical Research, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK

Personalised recommendations