General Cytotoxicity Assessment by Means of the MTT Assay

  • Laia Tolosa
  • María Teresa Donato
  • María José Gómez-LechónEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1250)


Cytotoxicity assays were among the first in vitro bioassay methods used to predict toxicity of substances to various tissues. In vitro cytotoxicity testing provides a crucial means for safety assessment and screening, and for ranking compounds. The choice of using a particular cytotoxicity assay technology may be influenced by specific research goals. As such, four main classes of assays are used to monitor the response of cultured cells after treatment with potential toxicants. These methods measure viability, cell membrane integrity, cell proliferation, and metabolic activity. In this chapter, we focus on the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium reduction colorimetric assay to evaluate detrimental intracellular effects on metabolic activity. This assay is well-characterized, simple to use and remains popular in several laboratories worldwide.

Key words

Cytotoxicity Tetrazolium salt IC50 Balb/c 3T3 cells Rat hepatocytes 



The authors acknowledge financial support from the ALIVE Foundation. Laia Tolosa was a recipient of a Sara Borrell Contract from the “Instituto de Salud Carlos III” of the Spanish Ministry of Economy and Competitiveness.


  1. 1.
    Gomez-Lechon MJ, Ponsoda X, Castell JV (2000) In vitro toxicity testing. In: Doyle A, Griffiths JB (eds) Cell and tissue culture for medical research. Wiley, Chinchester, pp 402–419Google Scholar
  2. 2.
    Niles AL, Moravec RA, Riss TL (2008) Update on in vitro cytotoxicity assays for drug development. Expert Opin Drug Discov 3:655–669PubMedCrossRefGoogle Scholar
  3. 3.
    Yang H, Acker J, Chen A et al (1998) In situ assessment of cell viability. Cell Transplant 7:443–451PubMedCrossRefGoogle Scholar
  4. 4.
    Stoddart MJ (2011) Cell viability assays: introduction. Methods Mol Biol 740:1–6PubMedCrossRefGoogle Scholar
  5. 5.
    Freshney R (1987) Culture of animal cells: a manual of basic technique. Alan R. Liss, Inc., New YorkGoogle Scholar
  6. 6.
    Krishan A (1975) Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining. J Cell Biol 66:188–193PubMedCrossRefGoogle Scholar
  7. 7.
    Bucana C, Saiki I, Nayar R (1986) Uptake and accumulation of the vital dye hydroethidine in neoplastic cells. J Histochem Cytochem 34:1109–1115PubMedCrossRefGoogle Scholar
  8. 8.
    Hutz RJ, DeMayo FJ, Dukelow WR (1985) The use of vital dyes to assess embryonic viability in the hamster, Mesocricetus auratus. Stain Technol 60:163–167PubMedGoogle Scholar
  9. 9.
    Schreer A, Tinson C, Sherry JP et al (2005) Application of alamar blue/5-carboxyfluorescein diacetate acetoxymethyl ester as a noninvasive cell viability assay in primary hepatocytes from rainbow trout. Anal Biochem 344:76–85PubMedCrossRefGoogle Scholar
  10. 10.
    Castell JV, Gomez-Lechon MJ, Ponsoda X et al (1997) In vitro investigation of the molecular mechanisms of hepatotoxicity. Arch Toxicol 19:313–321CrossRefGoogle Scholar
  11. 11.
    Ponsoda X, Jover R, Castell JV et al (1991) Measurement of intracellular LDH activity in 96-well cultures: a rapid and automated assay for cytotoxicity studies. J Tissue Cult Meth 13:21–24CrossRefGoogle Scholar
  12. 12.
    Cho MH, Niles A, Huang R et al (2008) A bioluminescent cytotoxicity assay for assessment of membrane integrity using a proteolytic biomarker. Toxicol In Vitro 22:1099–1106PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Quah BJ, Parish CR (2010) The use of carboxyfluorescein diacetate succinimidyl ester (CFSE) to monitor lymphocyte proliferation. J Vis Exp 44:2259PubMedGoogle Scholar
  14. 14.
    Franken NA, Rodermond HM, Stap J et al (2006) Clonogenic assay of cells in vitro. Nat Protoc 1:2315–2319PubMedCrossRefGoogle Scholar
  15. 15.
    Plumb JA (1999) Cell sensitivity assays: clonogenic assay. Methods Mol Med 28:17–23PubMedGoogle Scholar
  16. 16.
    Skehan P, Storeng R, Scudiero D et al (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112PubMedCrossRefGoogle Scholar
  17. 17.
    Vichai V, Kirtikara K (2006) Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc 1:1112–1116PubMedCrossRefGoogle Scholar
  18. 18.
    Sapan CV, Lundblad RL, Price NC (1999) Colorimetric protein assay techniques. Biotechnol Appl Biochem 29:99–108PubMedGoogle Scholar
  19. 19.
    Fotakis G, Timbrell JA (2006) In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett 160:171–177PubMedCrossRefGoogle Scholar
  20. 20.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63PubMedCrossRefGoogle Scholar
  21. 21.
    Brosin A, Wolf V, Mattheus A et al (1997) Use of XTT-assay to assess the cytotoxicity of different surfactants and metal salts in human keratinocytes (HaCaT): a feasible method for in vitro testing of skin irritants. Acta Derm Venereol 77:26–28PubMedGoogle Scholar
  22. 22.
    Ponsoda X, Gomez-Lechon MJ, Castell JV (1998) Toxicity and cell density monitoring in monolayer and three-dimmensional cultures with the XTT assay. ATLA 26:331–342Google Scholar
  23. 23.
    Ishiyama M, Shiga M, Sasamoto K et al (1993) A new sulfonated tetrazolium salt that produces a highly water-soluble formazan dye. Chem Pharm Bull 41:1118–1122CrossRefGoogle Scholar
  24. 24.
    Gonzalez RJ, Tarloff JB (2001) Evaluation of hepatic subcellular fractions for alamar blue and MTT reductase activity. Toxicol In Vitro 15:257–259PubMedCrossRefGoogle Scholar
  25. 25.
    McMillian MK, Li L, Parker JB et al (2002) An improved resazurin-based cytotoxicity assay for hepatic cells. Cell Biol Toxicol 18:157–173PubMedCrossRefGoogle Scholar
  26. 26.
    O'Brien J, Wilson I, Orton T et al (2000) Investigation of the alamar blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267:5421–5426PubMedCrossRefGoogle Scholar
  27. 27.
    Crouch SP, Kozlowski R, Slater KJ et al (1993) The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J Immunol Methods 160:81–88PubMedCrossRefGoogle Scholar
  28. 28.
    Lundin A, Hasenson M, Persson J et al (1986) Estimation of biomass in growing cell lines by adenosine triphosphate assay. Methods Enzymol 133:27–42PubMedCrossRefGoogle Scholar
  29. 29.
    Borenfreund E, Puerner JA (1985) Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol Lett 24:119–124PubMedCrossRefGoogle Scholar
  30. 30.
    Jones PA, King AV (2003) High-throughput screening (HTS) for phototoxicity hazard using the in vitro 3T3 neutral red uptake assay. Toxicol In Vitro 17:703–708PubMedCrossRefGoogle Scholar
  31. 31.
    van Meerloo J, Kaspers GJ, Cloos J (2011) Cell sensitivity assays: the MTT assay. Methods Mol Biol 731:237–245PubMedCrossRefGoogle Scholar
  32. 32.
    Sridar C, D’Agostino J, Hollenberg PF (2012) Bioactivation of the cancer chemopreventive agent tamoxifen to quinone methides by cytochrome P4502B6 and identification of the modified residue on the apoprotein. Drug Metab Dispos 40:2280–2288PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Park BK, Laverty H, Srivastava A et al (2011) Drug bioactivation and protein adduct formation in the pathogenesis of drug-induced toxicity. Chem Biol Interact 192:30–36PubMedCrossRefGoogle Scholar
  34. 34.
    Gomez-Lechon MJ, Tolosa L, Castell JV et al (2010) Mechanism-based selection of compounds for the development of innovative in vitro approaches to hepatotoxicity studies in the LIINTOP project. Toxicol In Vitro 24:1879–1889PubMedCrossRefGoogle Scholar
  35. 35.
    Binda D, Lasserre-Bigot D, Bonet A et al (2003) Time course of cytochromes P450 decline during rat hepatocyte isolation and culture: effect of L-NAME. Toxicol In Vitro 17:59–67PubMedCrossRefGoogle Scholar
  36. 36.
    Rodriguez-Antona C, Donato MT, Boobis A et al (2002) Cytochrome P450 expression in human hepatocytes and hepatoma cell lines: molecular mechanisms that determine lower expression in cultured cells. Xenobiotica 32:505–520PubMedCrossRefGoogle Scholar
  37. 37.
    Suolinna EM (1982) Isolation and culture of liver cells and their use in the biochemical research of xenobiotics. Med Biol 60:237–254PubMedGoogle Scholar
  38. 38.
    Fallot P, Girgis A, Laine-Boeszoermenyi M et al (1965) Use of liquid scintillation spectrometer for the direct measurement of the radioactivity of tritium incorporated in the cells of mammals cultivated in vitro. Int J Appl Radiat Isot 16:349–356PubMedCrossRefGoogle Scholar
  39. 39.
    Dolbeare F, Gratzner H, Pallavicini MG et al (1983) Flow cytometric measurement of total DNA content and incorporated bromodeoxyuridine. Proc Natl Acad Sci U S A 80:5573–5577PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Ranall MV, Gabrielli BG, Gonda TJ (2010) Adaptation and validation of DNA synthesis detection by fluorescent dye derivatization for high-throughput screening. Biotechniques 48:379–386PubMedCrossRefGoogle Scholar
  41. 41.
    Korzeniewski C, Callewaert DM (1983) An enzyme-release assay for natural cytotoxicity. J Immunol Methods 64:313–320PubMedCrossRefGoogle Scholar
  42. 42.
    Sewell RB, Ling TS, Yeomans ND (1986) Ethanol-induced cell damage in cultured rat antral mucosa assessed by chromium-51 release. Dig Dis Sci 31:853–858PubMedCrossRefGoogle Scholar
  43. 43.
    Tan AS, Berridge MV (2000) Superoxide produced by activated neutrophils efficiently reduces the tetrazolium salt, WST-1 to produce a soluble formazan: a simple colorimetric assay for measuring respiratory burst activation and for screening anti-inflammatory agents. J Immunol Methods 238:59–68PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Laia Tolosa
    • 1
  • María Teresa Donato
    • 1
    • 2
    • 3
  • María José Gómez-Lechón
    • 1
    • 2
    Email author
  1. 1.Unidad de Hepatología ExperimentalInstituto de Investigación Sanitaria La FeValenciaSpain
  2. 2.CIBERehdFISBarcelonaSpain
  3. 3.Departamento de Bioquímica y Biología Molecular, Facultad de MedicinaUniversidad de ValenciaValenciaSpain

Personalised recommendations