Chemical Posttranslational Modification of Phage-Displayed Peptides

  • Simon Ng
  • Katrina F. Tjhung
  • Beth M. Paschal
  • Christopher J. Noren
  • Ratmir Derda
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1248)

Abstract

Phage-displayed peptide library has fueled the discovery of novel ligands for diverse targets. A new type of phage libraries that displays not only linear and disulfide-constrained cyclic peptides but moieties that cannot be encoded genetically or incorporated easily by bacterial genetic machinery has emerged recently. Chemical posttranslational modification of phage library is one of the simplest approaches to encode nonnatural moieties. It confers the library with new functionality and makes it possible to select and evolve molecules with properties not found in the peptides, for instance, glycopeptides recognized by carbohydrate-binding protein and peptides with photoswitching capability. To this end, we describe the newly emerging techniques to chemically modify the phage library and quantify the efficiency of the reaction with a biotin-capture assay. Finally, we provide the methods to construct N-terminal Ser peptide library that allows site-selective modification of phage.

Key words

Phage display Chemical modification Glycopeptide library Periodate oxidation Aldehyde Oxime ligation 

References

  1. 1.
    Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317PubMedCrossRefGoogle Scholar
  2. 2.
    Smith GP, Petrenko VA (1997) Phage display. Chem Rev 97:391–410PubMedCrossRefGoogle Scholar
  3. 3.
    Kehoe JW, Kay BK (2005) Filamentous phage display in the new millennium. Chem Rev 105:4056–4072PubMedCrossRefGoogle Scholar
  4. 4.
    Molek P, Strukelj B, Bratkovic T (2011) Peptide phage display as a tool for drug discovery: targeting membrane receptors. Molecules 16:857–887PubMedCrossRefGoogle Scholar
  5. 5.
    Svensen N, Walton JGA, Bradley M (2012) Peptides for cell-selective drug delivery. Trends Pharmacol Sci 33:186–192PubMedCrossRefGoogle Scholar
  6. 6.
    Pasqualini R, Ruoslahti E (1996) Organ targeting In vivo using phage display peptide libraries. Nature 380:364–366PubMedCrossRefGoogle Scholar
  7. 7.
    Sarikaya M, Tamerler C, Jen AKY et al (2003) Molecular biomimetics: nanotechnology through biology. Nat Mater 2:577–585PubMedCrossRefGoogle Scholar
  8. 8.
    Chen C-L, Rosi NL (2010) Peptide-based methods for the preparation of nanostructured inorganic materials. Angew Chem Int Ed 49:1924–1942CrossRefGoogle Scholar
  9. 9.
    Sandman KE, Benner JS, Noren CJ (2000) Phage display of selenopeptides. J Am Chem Soc 122:960–961CrossRefGoogle Scholar
  10. 10.
    Tian F, Tsao M-L, Schultz PG (2004) A phage display system with unnatural amino acids. J Am Chem Soc 126:15962–15963PubMedCrossRefGoogle Scholar
  11. 11.
    Day JW, Kim CH, Smider VV et al (2013) Identification of metal ion binding peptides containing unnatural amino acids by phage display. Bioorg Med Chem Lett 23:2598–2600PubMedCrossRefGoogle Scholar
  12. 12.
    Ng S, Jafari MR, Derda R (2012) Bacteriophages and viruses as a support for organic synthesis and combinatorial chemistry. ACS Chem Biol 7:123–138PubMedCrossRefGoogle Scholar
  13. 13.
    Dwyer MA, Lu W, Dwyer JJ et al (2000) Biosynthetic phage display: a novel protein engineering tool combining chemical and genetic diversity. Chem Biol 7:263–274PubMedCrossRefGoogle Scholar
  14. 14.
    Heinis C, Rutherford T, Freund S et al (2009) Phage-encoded combinatorial chemical libraries based on bicyclic peptides. Nat Chem Biol 5:502–507PubMedCrossRefGoogle Scholar
  15. 15.
    Rentero RI, Heinis C (2013) Phage selection of bicyclic peptides. Methods 60:46–54CrossRefGoogle Scholar
  16. 16.
    Ng S, Jafari MR, Matochko WL et al (2012) Quantitative synthesis of genetically encoded glycopeptide libraries displayed on M13 phage. ACS Chem Biol 7:1482–1487PubMedCrossRefGoogle Scholar
  17. 17.
    Arai K, Tsutsumi H, Mihara H (2013) A monosaccharide-modified peptide phage library for screening of ligands to carbohydrate-binding proteins. Bioorg Med Chem Lett 23:4940–4943PubMedCrossRefGoogle Scholar
  18. 18.
    Santoso B, Lam S, Murray BW et al (2013) A simple and efficient maleimide-based approach for peptide extension with a cysteine-containing peptide phage library. Bioorg Med Chem Lett 23:5680–5683PubMedCrossRefGoogle Scholar
  19. 19.
    Jafari MR, Deng L, Kitov PI et al (2013) Discovery of light-responsive ligands through screening of a light-responsive genetically-encoded library. ACS Chem Biol 9(2):443–450PubMedCrossRefGoogle Scholar
  20. 20.
    Hertveldt K, Beliën T, Volckaert G (2009) General M13 phage display: M13 phage display in identification and characterization of protein–protein interactions. In: Clokie MJ, Kropinski A (eds) Bacteriophages, vol 502. Humana Press, Berlin, pp 321–339CrossRefGoogle Scholar
  21. 21.
    Scott JK (2001) Overview: Peptide Libraries. In: Barbas III CF, Burton DR, Scott JK et al (eds) Phage display: a laboratory manual. Cold Spring Harbor Laboratory Press, New York, pp 14.1–14.2Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Simon Ng
    • 1
  • Katrina F. Tjhung
    • 1
  • Beth M. Paschal
    • 2
  • Christopher J. Noren
    • 2
  • Ratmir Derda
    • 1
  1. 1.Department of Chemistry, Alberta Glycomics CentreUniversity of AlbertaEdmontonCanada
  2. 2.New England BiolabsIpswichUSA

Personalised recommendations