Advertisement

Molecular Approaches to Recognize Relevant and Emerging Infectious Diseases in Animals

  • Fredrik Granberg
  • Oskar E. Karlsson
  • Mikael Leijon
  • Lihong Liu
  • Sándor Belák
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1247)

Abstract

Since the introduction of the first molecular tests, there has been a continuous effort to develop new and improved assays for rapid and efficient detection of infectious agents. This has been motivated by a need for improved sensitivity as well as results that can be easily communicated. The experiences and knowledge gained at the World Organisation for Animal Health (OIE) Collaborating Centre for Biotechnology-based Diagnosis of Infectious Diseases in Veterinary Medicine, Uppsala, Sweden, will here be used to provide an overview of the different molecular approaches that can be used to diagnose and identify relevant and emerging infectious diseases in animals.

Key words

Infectious diseases Pathogen detection Molecular diagnosis Transboundary animal diseases Endemic diseases Zoonoses PCR Isothermal amplification Hybridization Proximity ligation assay (PLA) Microarrays Nanotechnology 

Notes

Acknowledgments

This work was supported by Epi-SEQ, a research project under the 2nd joint call for transnational research projects by EMIDA ERA-NET (FP7 project nr. 219235), the European Union FP7 project RAPIDIA-FIELD (FP7-289364), the Formas Strong Research Environments “BioBridges” project (No. 2011-1692), the Award of Excellence (Excellensbidrag) provided to SB by the Swedish University of Agricultural Sciences (SLU), and executed in the framework of the EU-project AniBioThreat (Grant Agreement: Home/2009/ISEC/AG/191) with the financial support from the Prevention of and Fight against Crime Programme of the European Union, European Commission, Directorate General Home Affairs. This publication reflects the views only of the authors, and the European Commission cannot be held responsible for any use, which may be made of the information contained therein. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

  1. 1.
    Cleaveland S, Laurenson MK, Taylor LH (2001) Diseases of humans and their domestic mammals: pathogen characteristics, host range and the risk of emergence. Philos Trans R Soc Lond B Biol Sci 356:991–999PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Taylor LH, Latham SM, Woolhouse ME (2001) Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci 356:983–989PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Saiki RK, Gelfand DH, Stoffel S et al (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491PubMedCrossRefGoogle Scholar
  4. 4.
    Gouvea V, Glass RI, Woods P et al (1990) Polymerase chain reaction amplification and typing of rotavirus nucleic acid from stool specimens. J Clin Microbiol 28:276–282PubMedCentralPubMedGoogle Scholar
  5. 5.
    Kemp DJ, Smith DB, Foote SJ et al (1989) Colorimetric detection of specific DNA segments amplified by polymerase chain reactions. Proc Natl Acad Sci U S A 86:2423–2427PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Higuchi R, Fockler C, Dollinger G, Watson R (1993) Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Bio/Technology (N Y) 11:1026–1030CrossRefGoogle Scholar
  7. 7.
    Leijon M, Mousavi-Jazi M, Kubista M (2006) LightUp probes in clinical diagnostics. Mol Aspects Med 27:160–175PubMedCrossRefGoogle Scholar
  8. 8.
    Zipper H, Brunner H, Bernhagen J, Vitzthum F (2004) Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. Nucleic Acids Res 32:e103PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Whitcombe D, Theaker J, Guy SP, Brown T, Little S (1999) Detection of PCR products using self-probing amplicons and fluorescence. Nat Biotechnol 17:804–807PubMedCrossRefGoogle Scholar
  10. 10.
    Nazarenko I, Lowe B, Darfler M et al (2002) Multiplex quantitative PCR using self-quenched primers labeled with a single fluorophore. Nucleic Acids Res 30:e37PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Sherrill CB, Marshall DJ, Moser MJ et al (2004) Nucleic acid analysis using an expanded genetic alphabet to quench fluorescence. J Am Chem Soc 126:4550–4556PubMedCrossRefGoogle Scholar
  12. 12.
    McMenamy MJ, McKillen J, Hjertner B et al (2011) Development and comparison of a Primer-Probe Energy Transfer based assay and a 5′ conjugated Minor Groove Binder assay for sensitive real-time PCR detection of infectious laryngotracheitis virus. J Virol Methods 175:149–155PubMedCrossRefGoogle Scholar
  13. 13.
    Rasmussen TB, Uttenthal A, de Stricker K, Belák S, Storgaard T (2003) Development of a novel quantitative real-time RT-PCR assay for the simultaneous detection of all serotypes of foot-and-mouth disease virus. Arch Virol 148:2005–2021PubMedCrossRefGoogle Scholar
  14. 14.
    Holland PM, Abramson RD, Watson R, Gelfand DH (1991) Detection of specific polymerase chain reaction product by utilizing the 5'-3' exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A 88:7276–7280PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308PubMedCrossRefGoogle Scholar
  16. 16.
    Sanchez JA, Pierce KE, Rice JE, Wangh LJ (2004) Linear-after-the-exponential (LATE)-PCR: an advanced method of asymmetric PCR and its uses in quantitative real-time analysis. Proc Natl Acad Sci U S A 101:1933–1938PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Belák S, Thorén P, LeBlanc N, Viljoen G (2009) Advances in viral disease diagnostic and molecular epidemiological technologies. Expert Rev Mol Diagn 9:367–381PubMedCrossRefGoogle Scholar
  18. 18.
    Hoffmann B, Beer M, Reid SM et al (2009) A review of RT-PCR technologies used in veterinary virology and disease control: sensitive and specific diagnosis of five livestock diseases notifiable to the World Organisation for Animal Health. Vet Microbiol 139:1–23PubMedCrossRefGoogle Scholar
  19. 19.
    Leijon M, Ullman K, Thyselius S et al (2011) Rapid PCR-based molecular pathotyping of H5 and H7 avian influenza viruses. J Clin Microbiol 49:3860–3873PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Yacoub A, Leijon M, McMenamy MJ et al (2012) Development of a novel real-time PCR-based strategy for simple and rapid molecular pathotyping of Newcastle disease virus. Arch Virol 157:833–844PubMedCrossRefGoogle Scholar
  21. 21.
    Niemz A, Ferguson TM, Boyle DS (2011) Point-of-care nucleic acid testing for infectious diseases. Trends Biotechnol 29:240–250PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Hofmann WP, Dries V, Herrmann E et al (2005) Comparison of transcription mediated amplification (TMA) and reverse transcription polymerase chain reaction (RT-PCR) for detection of hepatitis C virus RNA in liver tissue. J Clin Virol 32:289–293PubMedCrossRefGoogle Scholar
  23. 23.
    Jeong YJ, Park K, Kim DE (2009) Isothermal DNA amplification in vitro: the helicase-dependent amplification system. Cell Mol Life Sci 66:3325–3336PubMedCrossRefGoogle Scholar
  24. 24.
    Notomi T, Okayama H, Masubuchi H et al (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:E63PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Johne R, Müller H, Rector A, van Ranst M, Stevens H (2009) Rolling-circle amplification of viral DNA genomes using phi29 polymerase. Trends Microbiol 17:205–211PubMedCrossRefGoogle Scholar
  26. 26.
    Nagamine K, Hase T, Notomi T (2002) Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes 16:223–229PubMedCrossRefGoogle Scholar
  27. 27.
    Zhang XJ, Sun Y, Liu L, Belák S, Qiu HJ (2010) Validation of a loop-mediated isothermal amplification assay for visualised detection of wild-type classical swine fever virus. J Virol Methods 167:74–78PubMedCrossRefGoogle Scholar
  28. 28.
    Yamazaki W, Mioulet V, Murray L et al (2013) Development and evaluation of multiplex RT-LAMP assays for rapid and sensitive detection of foot-and-mouth disease virus. J Virol Methods 192:18–24PubMedCrossRefGoogle Scholar
  29. 29.
    Lalande V, Barrault L, Wadel S et al (2011) Evaluation of a loop-mediated isothermal amplification assay for diagnosis of Clostridium difficile infections. J Clin Microbiol 49:2714–2716PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Polley SD, Mori Y, Watson J et al (2010) Mitochondrial DNA targets increase sensitivity of malaria detection using loop-mediated isothermal amplification. J Clin Microbiol 48:2866–2871PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Mori Y, Kanda H, Notomi T (2013) Loop-mediated isothermal amplification (LAMP): recent progress in research and development. J Infect Chemother 19:404–411PubMedCrossRefGoogle Scholar
  32. 32.
    Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169PubMedCentralPubMedGoogle Scholar
  33. 33.
    Nilsson M, Malmgren H, Samiotaki M et al (1994) Padlock probes—circularizing oligonucleotides for localized DNA detection. Science 265:2085–2088PubMedCrossRefGoogle Scholar
  34. 34.
    Fredriksson S, Gullberg M, Jarvius J et al (2002) Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol 20:473–477PubMedCrossRefGoogle Scholar
  35. 35.
    Garaizar J, Rementeria A, Porwollik S (2006) DNA microarray technology: a new tool for the epidemiological typing of bacterial pathogens? FEMS Immunol Med Microbiol 47:178–189PubMedCrossRefGoogle Scholar
  36. 36.
    Hacia JG (1999) Resequencing and mutational analysis using oligonucleotide microarrays. Nat Genet 21(1 Suppl):42–47PubMedCrossRefGoogle Scholar
  37. 37.
    Zhang SL, Shen JG, Xu PH et al (2007) A novel genotypic test for rapid detection of multidrug-resistant Mycobacterium tuberculosis isolates by a multiplex probe array. J Appl Microbiol 103:1262–1271PubMedCrossRefGoogle Scholar
  38. 38.
    Ballarini A, Segata N, Huttenhower C, Jousson O (2013) Simultaneous quantification of multiple bacteria by the BactoChip microarray designed to target species-specific marker genes. PLoS One 8:e55764PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Wang D, Coscoy L, Zylberberg M et al (2002) Microarray-based detection and genotyping of viral pathogens. Proc Natl Acad Sci U S A 99:15687–15692PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Banér J, Nilsson M, Mendel-Hartvig M, Landegren U (1998) Signal amplification of padlock probes by rolling circle replication. Nucleic Acids Res 26:5073–5078PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Akhras MS, Thiyagarajan S, Villablanca AC et al (2007) PathogenMip assay: a multiplex pathogen detection assay. PLoS One 2:e223PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Novais RC, Borsuk S, Dellagostin OA, Thorstenson YR (2008) Molecular inversion probes for sensitive detection of Mycobacterium tuberculosis. J Microbiol Methods 72:60–66PubMedCrossRefGoogle Scholar
  43. 43.
    Akhras MS, Unemo M, Thiyagarajan S et al (2007) Connector inversion probe technology: a powerful one-primer multiplex DNA amplification system for numerous scientific applications. PLoS One 2:e915PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Gyarmati P, Conze T, Zohari S et al (2008) Simultaneous genotyping of all hemagglutinin and neuraminidase subtypes of avian influenza viruses by use of padlock probes. J Clin Microbiol 46:1747–1751PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Banér J, Gyarmati P, Yacoub A et al (2007) Microarray-based molecular detection of foot-and-mouth disease, vesicular stomatitis and swine vesicular disease viruses, using padlock probes. J Virol Methods 143:200–206PubMedCrossRefGoogle Scholar
  46. 46.
    Henriksson S, Blomström AL, Fuxler L et al (2011) Development of an in situ assay for simultaneous detection of the genomic and replicative form of PCV2 using padlock probes and rolling circle amplification. Virol J 8:37PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Soderberg O, Gullberg M, Jarvius M et al (2006) Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods 3:995–1000PubMedCrossRefGoogle Scholar
  48. 48.
    Schlingemann J, Leijon M, Yacoub A et al (2010) Novel means of viral antigen identification: improved detection of avian influenza viruses by proximity ligation. J Virol Methods 163:116–122PubMedCrossRefGoogle Scholar
  49. 49.
    Nordengrahn A, Gustafsdottir SM, Ebert K et al (2008) Evaluation of a novel proximity ligation assay for the sensitive and rapid detection of foot-and-mouth disease virus. Vet Microbiol 127:227–236PubMedCrossRefGoogle Scholar
  50. 50.
    Munir M, Zohari S, Berg M (2011) Non-structural protein 1 of avian influenza A viruses differentially inhibit NF-kappaB promoter activation. Virol J 8:383PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Kaittanis C, Santra S, Perez JM (2010) Emerging nanotechnology-based strategies for the identification of microbial pathogenesis. Adv Drug Deliv Rev 62:408–423PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Mairhofer J, Roppert K, Ertl P (2009) Microfluidic systems for pathogen sensing: a review. Sensors (Basel) 9:4804–4823CrossRefGoogle Scholar
  53. 53.
    Yager P, Edwards T, Fu E et al (2006) Microfluidic diagnostic technologies for global public health. Nature 442:412–418PubMedCrossRefGoogle Scholar
  54. 54.
    Cady NC, Stelick S, Kunnavakkam MV, Batt CA (2005) Real-time PCR detection of Listeria monocytogenes using an integrated microfluidics platform. Sens Actuators B Chem 107:332–341CrossRefGoogle Scholar
  55. 55.
    Easley CJ, Karlinsey JM, Bienvenue JM et al (2006) A fully integrated microfluidic genetic analysis system with sample-in-answer-out capability. Proc Natl Acad Sci U S A 103:19272–19277PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Compton J (1991) Nucleic acid sequence-based amplification. Nature 350:91–92PubMedCrossRefGoogle Scholar
  57. 57.
    Heo J, Hua SZ (2009) An overview of recent strategies in pathogen sensing. Sensors (Basel) 9:4483–4502CrossRefGoogle Scholar
  58. 58.
    Beyor N, Seo TS, Liu P, Mathies RA (2008) Immunomagnetic bead-based cell concentration microdevice for dilute pathogen detection. Biomed Microdevices 10:909–917PubMedCrossRefGoogle Scholar
  59. 59.
    Lapizco-Encinas BH, Simmons BA, Cummings EB, Fintschenko Y (2004) Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators. Anal Chem 76:1571–1579PubMedCrossRefGoogle Scholar
  60. 60.
    Kim J, Johnson M, Hill P, Gale BK (2009) Microfluidic sample preparation: cell lysis and nucleic acid purification. Integr Biol 1:574–586CrossRefGoogle Scholar
  61. 61.
    Wen J, Legendre LA, Bienvenue JM, Landers JP (2008) Purification of nucleic acids in microfluidic devices. Anal Chem 80:6472–6479PubMedCrossRefGoogle Scholar
  62. 62.
    Lien K-Y, Lee WC, Lei HY, Lee GB (2007) Integrated reverse transcription polymerase chain reaction systems for virus detection. Biosens Bioelectron 22:1739–1748PubMedCrossRefGoogle Scholar
  63. 63.
    Belgrader P, Benett W, Hadley D et al (1998) Rapid pathogen detection using a microchip PCR array instrument. Clin Chem 44:2191–2194PubMedGoogle Scholar
  64. 64.
    Higgins JA, Nasarabadi S, Karns JS et al (2003) A handheld real time thermal cycler for bacterial pathogen detection. Biosens Bioelectron 18:1115–1123PubMedCrossRefGoogle Scholar
  65. 65.
    Jain KK (2003) Nanodiagnostics: application of nanotechnology in molecular diagnostics. Expert Rev Mol Diagn 3:153–161PubMedCrossRefGoogle Scholar
  66. 66.
    Hauck TS, Giri S, Gao Y, Chan WC (2010) Nanotechnology diagnostics for infectious diseases prevalent in developing countries. Adv Drug Deliv Rev 62:438–448PubMedCrossRefGoogle Scholar
  67. 67.
    Vo-Dinh T, Cullum B (2000) Biosensors and biochips: advances in biological and medical diagnostics. Fresenius J Anal Chem 366:540–551PubMedCrossRefGoogle Scholar
  68. 68.
    Gu H, Xu K, Xu C, Xu B (2006) Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem Commun 2006(9):941–949CrossRefGoogle Scholar
  69. 69.
    Li Y, Cu YT, Luo D (2005) Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes. Nat Biotechnol 23:885–889PubMedCrossRefGoogle Scholar
  70. 70.
    Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446PubMedCrossRefGoogle Scholar
  71. 71.
    Thaxton CS, Georganopoulou DG, Mirkin CA (2006) Gold nanoparticle probes for the detection of nucleic acid targets. Clin Chim Acta 363:120–126PubMedCrossRefGoogle Scholar
  72. 72.
    Stoltenberg RM, Woolley AT (2004) DNA-templated nanowire fabrication. Biomed Microdevices 6:105–111PubMedCrossRefGoogle Scholar
  73. 73.
    Ziegler C (2004) Cantilever-based biosensors. Anal Bioanal Chem 379:946–959PubMedGoogle Scholar
  74. 74.
    Yang L, Li Y (2006) Simultaneous detection of Escherichia coli O157:H7 and Salmonella Typhimurium using quantum dots as fluorescence labels. Analyst 131:394–401PubMedCrossRefGoogle Scholar
  75. 75.
    Shanmukh S, Jones L, Driskell J et al (2006) Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate. Nano Lett 6:2630–2636PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Fredrik Granberg
    • 1
    • 2
  • Oskar E. Karlsson
    • 1
    • 2
  • Mikael Leijon
    • 1
    • 3
  • Lihong Liu
    • 1
    • 3
  • Sándor Belák
    • 1
    • 2
    • 3
  1. 1.OIE Collaborating Centre for the Biotechnology-Based Diagnosis of Infectious Diseases in Veterinary MedicineSwedish University of Agricultural Sciences (SLU)UppsalaSweden
  2. 2.Section of Virology, Department of Biomedical Sciences and Veterinary Public Health (BVF)Swedish University of Agricultural Sciences (SLU)UppsalaSweden
  3. 3.The National Veterinary Institute (SVA)UppsalaSweden

Personalised recommendations