Advertisement

Metagenomic Approaches to Disclose Disease-Associated Pathogens: Detection of Viral Pathogens in Honeybees

  • Fredrik Granberg
  • Oskar E. Karlsson
  • Sándor Belák
Part of the Methods in Molecular Biology book series (MIMB, volume 1247)

Abstract

Metagenomic approaches have become invaluable for culture-independent and sequence-independent detection and characterization of disease-associated pathogens. Here, the sequential steps from sampling to verification of results are described for a metagenomic-based approach to detect potential pathogens in honeybees. The pre-sequencing steps are given in detail, but due to the rapid development of sequencing technologies, all platform-specific procedures, as well as subsequent bioinformatics analysis, are more generally described. It should also be noted that this approach could, with minor modifications, be adapted for other organisms and sample matrices.

Key words

Metagenomics Sequencing Unknown viruses Virus detection Diagnosis Unknown etiology 

Notes

Acknowledgments

The authors would especially like to thank Professor José Manuel Sánchez-Vizcaíno (Animal Health Department, Complutense University of Madrid, Madrid, Spain) and his research group for their contribution to the original paper on which this chapter was based. This work was supported by Epi-SEQ, a research project supported under the 2nd joint call for transnational research projects by EMIDA ERA-NET (FP7 project nr 219235); by the Award of Excellence (Excellensbidrag), provided to SB by the Swedish University of Agricultural Sciences (SLU); and by/executed in the framework of the EU project AniBioThreat (Grant Agreement: Home/2009/ISEC/AG/191) with the financial support from the Prevention of and Fight against Crime Programme of the European Union, European Commission—Directorate General Home Affairs. This publication reflects the views only of the authors, and the European Commission cannot be held responsible for any use, which may be made of the information contained therein. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

  1. 1.
    Cheval J, Sauvage V, Frangeul L et al (2011) Evaluation of high-throughput sequencing for identifying known and unknown viruses in biological samples. J Clin Microbiol 49:3268–3275PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Lipkin WI (2010) Microbe hunting. Microbiol Mol Biol Rev 74:363–377PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Nakamura S, Nakaya T, Iida T (2011) Metagenomic analysis of bacterial infections by means of high-throughput DNA sequencing. Exp Biol Med (Maywood) 236:968–971CrossRefGoogle Scholar
  4. 4.
    Tang P, Chiu C (2010) Metagenomics for the discovery of novel human viruses. Future Microbiol 5:177–189PubMedCrossRefGoogle Scholar
  5. 5.
    Daly GM, Bexfield N, Heaney J et al (2011) A viral discovery methodology for clinical biopsy samples utilising massively parallel next generation sequencing. PLoS One 6:e28879PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Delwart EL (2007) Viral metagenomics. Rev Med Virol 17:115–131PubMedCrossRefGoogle Scholar
  7. 7.
    Allander T, Tammi MT, Eriksson M et al (2005) Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc Natl Acad Sci U S A 102:12891–12896PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Allander T, Emerson SU, Engle RE, Purcell RH, Bukh J (2001) A virus discovery method incorporating DNase treatment and its application to the identification of two bovine parvovirus species. Proc Natl Acad Sci U S A 98:11609–11614PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Victoria JG, Kapoor A, Dupuis K, Schnurr DP, Delwart EL (2008) Rapid identification of known and new RNA viruses from animal tissues. PLoS Pathog 4:e1000163PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Djikeng A, Halpin R, Kuzmickas R et al (2008) Viral genome sequencing by random priming methods. BMC Genomics 9:5PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Reyes GR, Kim JP (1991) Sequence-independent, single-primer amplification (SISPA) of complex DNA populations. Mol Cell Probes 5:473–481PubMedCrossRefGoogle Scholar
  12. 12.
    Rosseel T, Scheuch M, Höper D (2012) DNase SISPA-next generation sequencing confirms Schmallenberg virus in Belgian field samples and identifies genetic variation in Europe. PLoS One 7:e41967PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Ambrose HE, Clewley JP (2006) Virus discovery by sequence-independent genome amplification. Rev Med Virol 16:365–383PubMedCrossRefGoogle Scholar
  14. 14.
    Karlsson OE, Belák S, Granberg F (2013) The effect of preprocessing by sequence-independent, single-primer amplification (SISPA) on metagenomic detection of viruses. Biosecur Bioterror 11(S1):S227–S234PubMedCrossRefGoogle Scholar
  15. 15.
    Rosseel T, Van Borm S, Vandenbussche F et al (2013) The origin of biased sequence depth in sequence-independent nucleic acid amplification and optimization for efficient massive parallel sequencing. PLoS One 8:e76144PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Linnarsson S (2010) Recent advances in DNA sequencing methods—general principles of sample preparation. Exp Cell Res 316:1339–1343PubMedCrossRefGoogle Scholar
  17. 17.
    Palacios G, Druce J, Du L et al (2008) A new arenavirus in a cluster of fatal transplant-associated diseases. N Engl J Med 358:991–998PubMedCrossRefGoogle Scholar
  18. 18.
    Briese T, Paweska JT, McMullan LK et al (2009) Genetic detection and characterization of Lujo virus, a new hemorrhagic fever-associated arenavirus from southern Africa. PLoS Pathog 5:e1000455PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Cox-Foster DL, Conlan S, Holmes EC et al (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318:283–287PubMedCrossRefGoogle Scholar
  20. 20.
    Loman NJ, Misra RV, Dallman TJ et al (2012) Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol 30:434–439PubMedCrossRefGoogle Scholar
  21. 21.
    Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Pirk CWW, Miranda JR, Kramer M, et al. (2013) Statistical guidelines for Apis mellifera research. J Apic Res 52 (doi: 10.3896/IBRA.1.52.4.13)Google Scholar
  23. 23.
    Granberg F, Vicente-Rubiano M, Rubio-Guerri C et al (2013) Metagenomic detection of viral pathogens in Spanish honeybees: co-infection by Aphid lethal paralysis, Israel acute paralysis and Lake Sinai viruses. PLoS One 8:e57459PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Belák S, Karlsson OE, Leijon M, Granberg F (2013) High-throughput sequencing in veterinary infection biology and diagnostics. Rev Sci Tech 32:893–915PubMedGoogle Scholar
  25. 25.
    Glenn TC (2011) Field guide to next-generation DNA sequencers. Mol Ecol Resour 11:759–769PubMedCrossRefGoogle Scholar
  26. 26.
    Huson DH, Mitra S, Ruscheweyh HJ, Weber N, Schuster SC (2011) Integrative analysis of environmental sequences using MEGAN4. Genome Res 21:1552–1560PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMedGoogle Scholar
  28. 28.
    Ratcliff RM, Chang G, Kok T, Sloots TP (2007) Molecular diagnosis of medical viruses. Curr Issues Mol Biol 9:87–102PubMedGoogle Scholar
  29. 29.
    Cock PJ, Antao T, Chang JT et al (2009) Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25:1422–1423PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Stajich JE, Block D, Boulez K et al (2002) The Bioperl toolkit: Perl modules for the life sciences. Genome Res 12:1611–1618PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Thorvaldsdottir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Kurtz S, Phillippy A, Delcher AL et al (2004) Versatile and open software for comparing large genomes. Genome Biol 5:R12PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Fredrik Granberg
    • 1
    • 2
  • Oskar E. Karlsson
    • 1
    • 2
  • Sándor Belák
    • 1
    • 2
    • 3
  1. 1.OIE Collaborating Centre for the Biotechnology-based Diagnosis of Infectious Diseases in Veterinary MedicineUppsalaSweden
  2. 2.Department of Biomedical Sciences and Veterinary Public Health (BVF)Swedish University of Agricultural Sciences (SLU)UppsalaSweden
  3. 3.The National Veterinary Institute (SVA)UppsalaSweden

Personalised recommendations