Data Mining for Pulsing the Emotion on the Web

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1246)

Abstract

The Internet is becoming an increasingly important part of our lives. Internet users share personal information and opinions on social media webs expressing their feelings, judgments, feelings or emotions easy. Text mining and information retrieval techniques allow us to explore all this information and discover what the authors’ opinions, claims, or assertions are. A general overview of sentiment analysis’ current approaches and its future challenges, providing basic information on their current trends, is made throughout this chapter.

Key words

Sentiment analysis Natural language processing Data mining Web 2.0 Social web 

References

  1. 1.
    Parrott W (2001) Emotions in social psychology: essential readings. Psychology PressGoogle Scholar
  2. 2.
    Bo P, Lee L (2008) Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval. pp 1–135Google Scholar
  3. 3.
    Liu B (2012) Sentiment analysis and opinion mining. Morgan & Claypool, p 167Google Scholar
  4. 4.
    Mejova Y (2009) Sentiment analysis: an overview [Online]. [Cited: 08 08, 2013]. http://www.cs.uiowa. edu/~ymejova/publications/CompsYelenaMejova.pdfGoogle Scholar
  5. 5.
    Anthony A, Gamon M (2005) Customizing sentiment classifiers to new domains: a case study. Proceedings of the International Conference on Recent Advances in Natural Language Processing, vol 1. pp 2–1Google Scholar
  6. 6.
    Songbo T, Wu G, Tang H, Cheng X (2007) A novel scheme for domain‐transfer problem in the context of sentiment analysis. ACM proceedings of the sixteenth ACM conference on information and knowledge management. pp 979–982Google Scholar
  7. 7.
    Whitelaw C, Navendu G, Shlomo Argamon (2005) Using appraisal groups for sentiment analysis. Proceedings of the 14th ACM international conference on information and knowledge management. ACM. pp 625–631Google Scholar
  8. 8.
    Thelwall M, Kevan B (2013) Topic-based sentiment analysis for the social web: the role of mood and issue-related words. J Am Soc Inform Sci Technol 64:1608–1617. doi:10.1002/asi.22872 CrossRefGoogle Scholar
  9. 9.
    He Y (2012) Incorporating sentiment prior knowledge for weakly supervised sentiment analysis. ACM Transactions on Asian Language Information Processing (TALIP) 11(2): 979–982Google Scholar
  10. 10.
    Alpaydin E (2004) Introduction to machine learning. MIT PressGoogle Scholar
  11. 11.
    Bo P, Lee L, Vaithyanathan S (2002) Thumbs up?: sentiment classification using machine learning techniques. Association for Computational Linguistics. Proceedings of the ACL-02 conference on empirical methods in natural language processing, vol 10. pp 79–86Google Scholar
  12. 12.
    Turney, PD (2002) Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. Proceedings of the 40th annual meeting on association for computational linguistics. Association for Computational Linguistics, pp 417–424Google Scholar
  13. 13.
    Maite T, Brooke J, Tofiloski M, Voll K, Stede M (2011) Lexicon-based methods for sentiment analysis. Computational linguistics. pp 267–307Google Scholar
  14. 14.
    Hurwitz R (2012) General Inquirer home page [Online]. [Cited: August 08, 2013]. http://www.wjh.harvard.edu/~inquirer/
  15. 15.
    Pennebaker JW, Booth RJ, Francis ME (2007) Linguistic inquiry and word count [Online]. [Cited: August 08, 2013]. http://www.liwc.net/
  16. 16.
    Princeton. Wordnet a lexical database for english [Online]. [Cited: Agosto 08, 2013]. http://wordnet.princeton.edu
  17. 17.
    Andrea E, Fabrizio S (2010) SentiWordNet [Online]. [Cited: August 08, 2013]. http://sentiwordnet.isti.cnr.it/
  18. 18.
    Whissell (2013) Emotional text recognition using Whissell’s dictionary of affective language [Online]. [Cited: August 08, 2013]. http://sail.usc.edu/dal_app.php
  19. 19.
    MIT Media Laboratory (2013) Sentic API [Online]. [Cited: August 08, 2013]. http://sentic.net/api/
  20. 20.
    Bo P, Lee L (2005) Movie review data [Online]. [Cited: August 08, 2013]. http://www.cs.cornell.edu/people/pabo/movie-review-data/
  21. 21.
    Dredze M, Blitze J (2009) Multi-domain sentiment dataset [Online]. [Cited: August 08, 2013]. http://www.cs.jhu.edu/~mdredze/datasets/sentiment/
  22. 22.
    Wilson T (2013) MPQA opinion corpus [Online]. [Cited: August 08, 2013]. mpqa.cs.pitt.eduGoogle Scholar
  23. 23.
    Google (2013) Google prediction API [Online]. [Cited: August 08, 2013]. https://developers.google.com/prediction/docs/sentiment_analysis
  24. 24.
    Ling P (2005) Sentiment tutorial [Online]. [Cited: August 08, 2013]. http://alias-i.com/lingpipe/demos/tutorial/sentiment/read-me.html
  25. 25.
    Kaplan AM, Michael H (2010) Users of the world, unite! the challenges and opportunities of social media. Business horizons, vol 1. pp 59–98Google Scholar
  26. 26.
    Duggan M, Brenner J (2013) The demographics of social media users — 2012. PewInternet [Online]. Pew Research centers. [Cited: August 08, 2013] http://pewinternet.org/Reports/2013/Social-media-users/The-State-of-Social-Media-Users.aspx

Copyright information

© Springer Science+Business Media, New York 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of TromsoTromsøNorway

Personalised recommendations