Actigraphy Pattern Analysis for Outpatient Monitoring

  • Elies Fuster-Garcia
  • Adrián Bresó
  • Juan Martínez Miranda
  • Juan Miguel García-Gómez
Part of the Methods in Molecular Biology book series (MIMB, volume 1246)

Abstract

The actigraphy is a cost-effective method for assessing specific sleep disorders such as diagnosing insomnia, circadian rhythm disorders, or excessive sleepiness. Due to recent advances in wireless connectivity and motion activity sensors, the new actigraphy devices allow the non-intrusive and non-stigmatizing monitoring of outpatients for weeks or even months facilitating treatment outcome measure in daily life activities. This possibility has propitiated new studies suggesting the utility of actigraphy to monitor outpatients with mood disorders such as major depression, or patients with dementia. However, the full exploitation of data acquired during the monitoring period requires the use of automatic systems and techniques that allow the reduction of inherent complexity of the data, the extraction of most informative features, and the interpretability and decision-making. In this study we purpose a set of techniques for actigraphy patterns analysis for outpatient monitoring. These techniques include actigraphy signal pre-processing, quantification, nonlinear registration, feature extraction, detection of anomalies, and pattern visualization. In addition, techniques for daily actigraphy signals modelling and simulation are included to facilitate the development and test of new analysis techniques in controlled scenarios.

Key words

Actigraphy Outpatient monitoring Functional data analysis Feature extraction Kernel density estimation Simulation 

References

  1. 1.
    Morgenthaler T, Alessi C, Friedman L et al (2007) Practice parameters for the use of actigraphy in the assessment of sleep and sleep disorders: an update for 2007. Sleep 30(4): 519–529PubMedGoogle Scholar
  2. 2.
    Sadeh A, Acebo C (2002) The role of actigraphy in sleep medicine. Sleep Med Rev 6:113–124PubMedCrossRefGoogle Scholar
  3. 3.
    Ancoli-Israel S et al (2003) The role of actigraphy in the study of sleep and circadian rhythms. Sleep 26:342–392PubMedGoogle Scholar
  4. 4.
    De Souza L et al (2003) Further validation of actigraphy for sleep studies. Sleep 26:81–85PubMedGoogle Scholar
  5. 5.
    Sadeh A (2011) The role and validity of actigraphy in sleep medicine: an update. Sleep Med Rev 15:259–267PubMedCrossRefGoogle Scholar
  6. 6.
    Perez-Diaz de Cerio D et al (2013) The help4mood wearable sensor network for inconspicuous activity measurement. IEEE Wireless Commun 20:50–56CrossRefGoogle Scholar
  7. 7.
    Burton C et al (2013) Activity monitoring in patients with depression: a systematic review. J Affect Disord 145:21–28PubMedCrossRefGoogle Scholar
  8. 8.
    Todder D, Caliskan S, Baune BT (2009) Longitudinal changes of day-time and night-time gross motor activity in clinical responders and non-responders of major depression. World J Biol Psychiatry 10:276–284PubMedCrossRefGoogle Scholar
  9. 9.
    Finazzi ME et al (2010) Motor activity and depression severity in adolescent outpatients. Neuropsychobiology 61:33–40PubMedCrossRefGoogle Scholar
  10. 10.
    Lemke MR, Broderick A, Zeitelberger M, Hartmann W (1997) Motor activity and daily variation of symptom intensity in depressed patients. Neuropsychobiology 36:57–61PubMedCrossRefGoogle Scholar
  11. 11.
    Hatfield CF, Herbert J, van Someren EJW, Hodges JR, Hastings MH (2004) Disrupted daily activity/rest cycles in relation to daily cortisol rhythms of home-dwelling patients with early Alzheimer’s dementia. Brain 127:1061–1074PubMedCrossRefGoogle Scholar
  12. 12.
    Paavilainen P, Korhonen I, Ltjnen J (2005) Circadian activity rhythm in demented and non-demented nursing-home residents measured by telemetric actigraphy. J Sleep Res 14: 61–68PubMedCrossRefGoogle Scholar
  13. 13.
    Help4mood project website. http://help4mood.info
  14. 14.
    Optimi project website. http://www.optimiproject.eu
  15. 15.
    Texas Instrumetns (TI) Chronos watch information [Online] Available: http://processors.wiki.ti.com/index.php/EZ430-Chronos
  16. 16.
    Mahdavi H et al. (2012) A wireless under-mattress sensor system for sleep monitoring in people with major depression. A: IASTED International Conference Biomedical Engineering (BioMed). Proceedings of the ninth IASTED International Conference Biomedical Engineering (BioMed 2012). Innsbruck, 2012. p 1–5Google Scholar
  17. 17.
    Fuster-Garcia E et al. (2014) Fusing actigraphy signals for outpatient monitoring. Informat Fusion (in press). http://www.sciencedirect.com/science/article/pii/S156625351400089X
  18. 18.
    Little RJ, Rubin DB (2002) Statistical analysis with missing data. Wiley, New YorkCrossRefGoogle Scholar
  19. 19.
    Sadeh A, Sharkey KM, Carskadon MA (1994) Activity-based sleep-wake identification: an empirical test of methodological issues. Sleep 17: 201–207PubMedGoogle Scholar
  20. 20.
    Sazonov E, Sazonova N, Schuckers S, Neuman M, CHIME Study Group (2004) Activity-based sleep-wake identification in infants. Physiol Meas 25:1291–1304PubMedCrossRefGoogle Scholar
  21. 21.
    Tilmanne J, Urbain J, Kothare MV, Wouwer AV, Kothare SV (2009) Algorithms for sleep–wake identification using actigraphy: a comparative study and new results. J Sleep Res 18:85–98PubMedCrossRefGoogle Scholar
  22. 22.
    Ramsay JO, Silverman BW (2005) Functional data analysis, Springer series in statistics. Springer, New YorkGoogle Scholar
  23. 23.
  24. 24.
    Deboor C (1978) A practical guide to splines. Springer, BerlinCrossRefGoogle Scholar
  25. 25.
    Craven WG (1979) Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the methods of generalized cross-validation. Numer Math 31: 377–403CrossRefGoogle Scholar
  26. 26.
    Jolliffe IT (2002) Principal component analysis. Springer, New YorkGoogle Scholar
  27. 27.
    Lee DD, Seung HS (2000) Algorithms for non-negative matrix factorization. In: NIPS. MIT Press, Cambridge, pp 556–562Google Scholar
  28. 28.
    Lee JA, Verleysen M (2007) Nonlinear dimensionality reduction. Springer, New YorkCrossRefGoogle Scholar
  29. 29.
    Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey. ACM Comput Surv 41:3–61CrossRefGoogle Scholar
  30. 30.
    Fuster-Garcia E, Juan-Albarracin J, Breso A, Garcia-Gomez JM (2013) Monitoring changes in daily actigraphy patterns of free-living patients. International work-conference on bioinformatics and biomedical engineering (IWBBIO) proceedings, pp 685–693Google Scholar
  31. 31.
    Simonoff JS (1996) Smoothing methods in statistics. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2015

Authors and Affiliations

  • Elies Fuster-Garcia
    • 1
  • Adrián Bresó
    • 2
  • Juan Martínez Miranda
    • 2
  • Juan Miguel García-Gómez
    • 1
    • 2
  1. 1.Veratech for Health, S.L.ValènciaSpain
  2. 2.IBIME, Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA)Universitat Politècnica de ValènciaValènciaSpain

Personalised recommendations