In Silico Control of Biomolecular Processes

Part of the Methods in Molecular Biology book series (MIMB, volume 1244)


By implementing an external feedback loop one can tightly control the expression of a gene over many cell generations with quantitative accuracy. Controlling precisely the level of a protein of interest will be useful to probe quantitatively the dynamical properties of cellular processes and to drive complex, synthetically-engineered networks. In this chapter we describe a platform for real-time closed-loop control of gene expression in yeast that integrates microscopy for monitoring gene expression at the cell level, microfluidics to manipulate the cells environment, and original software for automated imaging, quantification, and model predictive control. By using an endogenous osmo-stress responsive promoter and playing with the osmolarity of the cells environment, we demonstrate that long-term control can indeed be achieved for both time-constant and time-varying target profiles, at the population level, and even at the single-cell level.

Key words

Model predictive control Gene expression High-osmolarity glycerol (HOG) pathway Computational biology Quantitative systems and synthetic biology 



We acknowledge the support of the Agence Nationale de la Recherche (under the references DiSiP-ANR-07-JCJC-0001 and ICEBERG-ANR-10-BINF-06-01), of the Région Ile de France (C’Nano-ModEnv), of the Action d’Envergure ColAge from INRIA/INSERM (Institut Nationale de la Santé et de la Recherche Médicale), of the MechanoBiology Institute, and of the Laboratoire International Associé CAFS (Cell Adhesion France-Singapour).


  1. 1.
    Bhalla US, Ram PT, Iyengar R (2002) MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science 297:1018–23PubMedCrossRefGoogle Scholar
  2. 2.
    Hooshangi S, Thiberge S, Weiss R (2005) Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. Proc Natl Acad Sci U S A 102:3581–6PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Cai L, Dalal CK, Elowitz MB (2008) Frequency-modulated nuclear localization bursts coordinate gene regulation. Nature 455:485–90PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Celani A, Vergassola M (2010) Bacterial strategies for chemotaxis response. Proc Natl Acad Sci U S A 107:1391–6PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Baumgartner BL, Bennett MR, Ferry M et al (2011) Antagonistic gene transcripts regulate adaptation to new growth environments. Proc Natl Acad Sci U S A 108:21087–92PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    O’Shaughnessy EC, Palani S, Collins JJ et al (2011) Tunable signal processing in synthetic MAP kinase cascades. Cell 144:119–31PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    de Nadal E, Alepuz PM, Posas F (2002) Dealing with osmostress through MAP kinase activation. EMBO Rep 3:735–40PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Miermont A, Uhlendorf J, McClean M et al (2011) The dynamical systems properties of the HOG signaling cascade. J Signal Transduct 2011:930940PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Muzzey D, Gómez-Uribe C, Mettetal JT et al (2009) A systems-level analysis of perfect adaptation in yeast osmoregulation. Cell 138:160–71PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Yi TM, Huang Y, Simon MI et al (2000) Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc Natl Acad Sci U S A 97:4649–53PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Van Voorst F, Neves L, Oliveira R et al (2005) A member of the sugar transporter family, Stl1p is the glycerol/H + symporter in Saccharomyces cerevisiae. Mol Biol Cell 16:2068–2076PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    O’Rourke SM, Herskowitz I (2004) Unique and redundant roles for HOG MAPK pathway components as revealed by whole-genome expression analysis. Mol Biol Cell 15:532–542PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Uhlendorf J, Miermont A, Delaveau T et al (2012) Long-term model predictive control of gene expression at the population and single-cell levels. Proc Natl Acad Sci U S A 35:14271–14276CrossRefGoogle Scholar
  15. 15.
    Klipp E, Nordlander B, Krüger R et al (2005) Integrative model of the response of yeast to osmotic shock. Nat Biotechnol 23:975–82PubMedCrossRefGoogle Scholar
  16. 16.
    Hao N, Behar M, Parnell SC et al (2007) A systems-biology analysis of feedback inhibition in the Sho1 osmotic-stress-response pathway. Curr Biol 17:659–67PubMedCrossRefGoogle Scholar
  17. 17.
    Mettetal JT, Muzzey D, Gómez-Uribe C et al (2008) The frequency dependence of osmo-adaptation in Saccharomyces cerevisiae. Science 319:482–4PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Zi Z, Liebermeister W, Klipp E (2010) A quantitative study of the Hog1 MAPK response to fluctuating osmotic stress in Saccharomyces cerevisiae. PLoS One 5:e9522PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Zechner C, Ruess J, Krenn P et al (2012) Moment-based inference predicts bimodality in transient gene expression. Proc Natl Acad Sci U S A 109:8340–8345PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Uhlendorf J, Bottani S, Fages F, et al (2011) Towards real-time control of gene expression: controlling the hog signaling cascade. Pac Symp Biocomput 338–349Google Scholar
  21. 21.
    Menolascina F, di Bernardo M, di Bernardo D (2011) Analysis, design and implementation of a novel scheme for in-vivo control of synthetic gene regulatory networks. Automatica 47:1265–1270CrossRefGoogle Scholar
  22. 22.
    Toettcher JE, Gong D, Lim WA et al (2011) Light-based feedback for controlling intracellular signaling dynamics. Nat Methods 8:837–839PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Milias-Argeitis A, Summers S, Stewart-Ornstein J et al (2011) In silico feedback for in vivo regulation of a gene expression circuit. Nat Biotechnol 29:1114–1116PubMedCrossRefGoogle Scholar
  24. 24.
    Chen S, Harrigan P, Heineike B et al (2013) Building robust functionality in synthetic circuits using engineered feedback regulation. Curr Opin Biotechnol 24:790–6PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.INRIA Paris-RocquencourtLe ChesnayFrance
  2. 2.Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRSUniversité Paris DiderotParisFrance
  3. 3.Laboratoire de Génomique des Microorganismes, UMR 7238 CNRSUniversité Pierre et Marie CurieParisFrance
  4. 4.Institut de Biologie Moléculaire et CellulaireIllkirchFrance
  5. 5.The Mechanobiology InstituteNational University of SingaporeSingaporeSingapore
  6. 6.Laboratoire Matière et Systèmes ComplexesUniversité Paris Diderot-Paris 7Paris, Cedex 13France

Personalised recommendations