Advertisement

PCR Based Determination of Mitochondrial DNA Copy Number in Multiple Species

  • John P. Rooney
  • Ian T. Ryde
  • Laurie H. Sanders
  • Evan. H. Howlett
  • Meryl D. Colton
  • Kaylyn E. Germ
  • Greg D. Mayer
  • J. Timothy Greenamyre
  • Joel N. MeyerEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1241)

Abstract

Mitochondrial DNA (mtDNA) copy number is a critical component of overall mitochondrial health. In this chapter, we describe methods for isolation of both mtDNA and nuclear DNA (nucDNA) and measurement of their respective copy numbers using quantitative PCR. Methods differ depending on the species and cell type of the starting material and availability of specific PCR reagents.

Key words

Mitochondrial DNA mtDNA mtDNA depletion Copy number QPCR Mitochondrial toxicity Mitochondrial disease 

Notes

Acknowledgements

We thank Aleksandra Trifunovic for sharing the mtDNA copy number plasmid for C. elegans with us, and we thank Kevin Kwok for supplying us with medaka tissue. This work was supported by P42 ES010356-10A2, and the National Science Foundation (NSF) and the Environmental Protection Agency under NSF Cooperative Agreement EF-0830093, Center for the Environmental Implications of NanoTechnology (CEINT). Any opinions, findings, conclusions, or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the NSF or the EPA. This work has not been subjected to EPA review and no official endorsement should be inferred. The funding sources had no role in experimental design, data collection, or interpretation.

References

  1. 1.
    Wallace DC (2010) Mitochondrial DNA mutations in disease and aging. Environ Mol Mutagen 51(5):440–450. doi: 10.1002/em.20586 PubMedGoogle Scholar
  2. 2.
    Copeland WC (2010) The mitochondrial DNA polymerase in health and disease. Subcell Biochem 50:211–222. doi: 10.1007/978-90-481-3471-7_11 PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Campbell CT, Kolesar JE, Kaufman BA (2012) Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. Biochim Biophys Acta 1819(9–10):921–929. doi: 10.1016/j.bbagrm.2012.03.002 PubMedCrossRefGoogle Scholar
  4. 4.
    Copeland WC (2012) Defects in mitochondrial DNA replication and human disease. Crit Rev Biochem Mol Biol 47(1):64–74. doi: 10.3109/10409238.2011.632763 PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Suomalainen A, Isohanni P (2010) Mitochondrial DNA depletion syndromes–many genes, common mechanisms. Neuromuscul Disord 20(7):429–437. doi: 10.1016/j.nmd.2010.03.017 PubMedCrossRefGoogle Scholar
  6. 6.
    Copeland WC (2008) Inherited mitochondrial diseases of DNA replication. Annu Rev Med 59:131–146. doi: 10.1146/annurev.med.59.053006.104646 PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Rolo AP, Palmeira CM (2006) Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol 212(2):167–178. doi: 10.1016/j.taap.2006.01.003 PubMedCrossRefGoogle Scholar
  8. 8.
    Yu M (2011) Generation, function and diagnostic value of mitochondrial DNA copy number alterations in human cancers. Life Sci 89(3–4):65–71. doi: 10.1016/j.lfs.2011.05.010 PubMedCrossRefGoogle Scholar
  9. 9.
    Coskun P, Wyrembak J, Schriner SE, Chen HW, Marciniack C, Laferla F, Wallace DC (2012) A mitochondrial etiology of Alzheimer and Parkinson disease. Biochim Biophys Acta 1820(5):553–564. doi: 10.1016/j.bbagen.2011.08.008 PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Blanche S, Tardieu M, Rustin P, Slama A, Barret B, Firtion G, Ciraru-Vigneron N, Lacroix C, Rouzioux C, Mandelbrot L, Desguerre I, Rotig A, Mayaux MJ, Delfraissy JF (1999) Persistent mitochondrial dysfunction and perinatal exposure to antiretroviral nucleoside analogues. Lancet 354(9184):1084–1089. doi: 10.1016/S0140-6736(99)07219-0, S0140-6736(99)07219-0 [pii]PubMedCrossRefGoogle Scholar
  11. 11.
    Fetterman JL, Pompilius M, Westbrook DG, Uyeminami D, Brown J, Pinkerton KE, Ballinger SW (2013) Developmental exposure to second-hand smoke increases adult atherogenesis and alters mitochondrial dna copy number and deletions in apoE(-/-) mice. PLoS One 8(6):e66835. doi: 10.1371/journal.pone.0066835 PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Pavanello S, Dioni L, Hoxha M, Fedeli U, Mielzynska-Svach D, Baccarelli AA (2013) Mitochondrial DNA copy number and exposure to polycyclic aromatic hydrocarbons. Cancer Epidemiol Biomarkers Prev 22:1722–1729. doi: 10.1158/1055-9965.EPI-13-0118 PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Janssen BG, Munters E, Pieters N, Smeets K, Cox B, Cuypers A, Fierens F, Penders J, Vangronsveld J, Gyselaers W, Nawrot TS (2012) Placental mitochondrial DNA content and particulate air pollution during in utero life. Environ Health Perspect 120(9):1346–1352. doi: 10.1289/ehp.1104458 PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Bratic I, Hench J, Henriksson J, Antebi A, Burglin TR, Trifunovic A (2009) Mitochondrial DNA level, but not active replicase, is essential for Caenorhabditis elegans development. Nucleic Acids Res 37(6):1817–1828. doi: 10.1093/nar/gkp018 PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Furda AM, Bess AS, Meyer JN, Van Houten B (2012) Analysis of DNA damage and repair in nuclear and mitochondrial DNA of animal cells using quantitative PCR. Methods Mol Biol 920:111–132. doi: 10.1007/978-1-61779-998-3_9 PubMedCrossRefGoogle Scholar
  16. 16.
    Hunter SE, Jung D, Di Giulio RT, Meyer JN (2010) The QPCR assay for analysis of mitochondrial DNA damage, repair, and relative copy number. Methods 51(4):444–451. doi: 10.1016/j.ymeth.2010.01.033 PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Ayala-Torres S, Chen Y, Svoboda T, Rosenblatt J, Van Houten B (2000) Analysis of gene-specific DNA damage and repair using quantitative polymerase chain reaction. Methods 22(2):135–147. doi: 10.1006/meth.2000.1054, S1046-2023(00)91054-5 [pii]PubMedCrossRefGoogle Scholar
  18. 18.
    Meyer JN, Boyd WA, Azzam GA, Haugen AC, Freedman JH, Van Houten B (2007) Decline of nucleotide excision repair capacity in aging Caenorhabditis elegans. Genome Biol 8(5):R70. doi: 10.1186/gb-2007-8-5-r70 PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Boyd WA, Crocker TL, Rodriguez AM, Leung MC, Lehmann DW, Freedman JH, Van Houten B, Meyer JN (2010) Nucleotide excision repair genes are expressed at low levels and are not detectably inducible in Caenorhabditis elegans somatic tissues, but their function is required for normal adult life after UVC exposure. Mutat Res 683(1–2):57–67. doi: 10.1016/j.mrfmmm.2009.10.008 PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Jung D, Cho Y, Meyer JN, Di Giulio RT (2009) The long amplicon quantitative PCR for DNA damage assay as a sensitive method of assessing DNA damage in the environmental model, Atlantic killifish (Fundulus heteroclitus). Comp Biochem Physiol C Toxicol Pharmacol 149(2):182–186. doi: 10.1016/j.cbpc.2008.07.007, S1532-0456(08)00139-7 [pii]PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Venegas V, Halberg MC (2012) Measurement of mitochondrial DNA copy number. Methods Mol Biol 837:327–335. doi: 10.1007/978-1-61779-504-6_22 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2015

Authors and Affiliations

  • John P. Rooney
    • 1
  • Ian T. Ryde
    • 1
  • Laurie H. Sanders
    • 2
  • Evan. H. Howlett
    • 2
  • Meryl D. Colton
    • 1
  • Kaylyn E. Germ
    • 3
  • Greg D. Mayer
    • 3
  • J. Timothy Greenamyre
    • 2
  • Joel N. Meyer
    • 1
    Email author
  1. 1.Nicholas School of the EnvironmentDuke UniversityDurhamUSA
  2. 2.Department of Neurology, Pittsburgh Institute for Neurodegenerative DiseasesUniversity of PittsburghPittsburghUSA
  3. 3.The Institute of Environmental and Human HealthTexas Tech UniversityLubbockUSA

Personalised recommendations