Chromosomal Mutagenesis pp 161-169

Part of the Methods in Molecular Biology book series (MIMB, volume 1239) | Cite as

Ligation-Independent Cloning (LIC) Assembly of TALEN Genes

  • Jonathan L. Schmid-Burgk
  • Tobias Schmidt
  • Veit Hornung
Protocol

Abstract

Modular DNA binding protein architectures hold the promise of wide application in functional genomic studies. Functionalization of DNA binding proteins, e.g. using the FokI nuclease domain, provides a potent tool to induce DNA double strand breaks at user-defined genomic loci. In this regard, TAL (transcription activator-like) effector proteins, secreted by bacteria of the Xanthomonas family, provide the highest degree of modularity in their DNA binding mode. However, the assembly of large and highly repetitive TALE protein coding genes can be challenging. We describe a ligation-independent cloning (LIC) based method to allow high-throughput assembly of TALE nuclease genes at high fidelity and low effort and cost.

Key words

TALE nucleases LIC assembly Genome editing 

References

  1. 1.
    Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326(5959):1509–1512. doi:10.1126/science.1178811 PubMedCrossRefGoogle Scholar
  2. 2.
    Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326(5959):1501. doi:10.1126/science.1178817 PubMedCrossRefGoogle Scholar
  3. 3.
    Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48:419–436. doi:10.1146/annurev-phyto-080508-081936 PubMedCrossRefGoogle Scholar
  4. 4.
    Carroll D (2011) Genome engineering with zinc-finger nucleases. Genetics 188(4):773–782. doi:10.1534/genetics.111.131433 PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Li T, Huang S, Zhao X, Wright DA, Carpenter S, Spalding MH, Weeks DP, Yang B (2011) Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res 39(14):6315–6325. doi:10.1093/nar/gkr188 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29(2):143–148. doi:10.1038/nbt.1755 PubMedCrossRefGoogle Scholar
  7. 7.
    Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186(2):757–761. doi:10.1534/genetics.110.120717 PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Watanabe T, Ochiai H, Sakuma T, Horch HW, Hamaguchi N, Nakamura T, Bando T, Ohuchi H, Yamamoto T, Noji S, Mito T (2012) Non-transgenic genome modifications in a hemimetabolous insect using zinc-finger and TAL effector nucleases. Nat Commun 3:1017. doi:10.1038/ncomms2020 PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Liu J, Li C, Yu Z, Huang P, Wu H, Wei C, Zhu N, Shen Y, Chen Y, Zhang B, Deng WM, Jiao R (2012) Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy. J Genet Genomics 39(5):209–215. doi:10.1016/j.jgg.2012.04.003 PubMedCrossRefGoogle Scholar
  10. 10.
    Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B (2011) Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol 29(8):699–700. doi:10.1038/nbt.1939 PubMedCrossRefGoogle Scholar
  11. 11.
    Sander JD, Cade L, Khayter C, Reyon D, Peterson RT, Joung JK, Yeh JR (2011) Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol 29(8):697–698. doi:10.1038/nbt.1934 PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Tesson L, Usal C, Menoret S, Leung E, Niles BJ, Remy S, Santiago Y, Vincent AI, Meng X, Zhang L, Gregory PD, Anegon I, Cost GJ (2011) Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 29(8):695–696. doi:10.1038/nbt.1940 PubMedCrossRefGoogle Scholar
  13. 13.
    Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, Cost GJ, Zhang L, Santiago Y, Miller JC, Zeitler B, Cherone JM, Meng X, Hinkley SJ, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29(8):731–734. doi:10.1038/nbt.1927 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Wood AJ, Lo TW, Zeitler B, Pickle CS, Ralston EJ, Lee AH, Amora R, Miller JC, Leung E, Meng X, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Meyer BJ (2011) Targeted genome editing across species using ZFNs and TALENs. Science 333(6040):307. doi:10.1126/science.1207773 PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK (2012) FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 30(5):460–465. doi:10.1038/nbt.2170 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Weber E, Gruetzner R, Werner S, Engler C, Marillonnet S (2011) Assembly of designer TAL effectors by Golden Gate cloning. PLoS One 6(5):e19722. doi:10.1371/journal.pone.0019722 PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39(12):e82. doi:10.1093/nar/gkr218 PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Morbitzer R, Elsaesser J, Hausner J, Lahaye T (2011) Assembly of custom TALE-type DNA binding domains by modular cloning. Nucleic Acids Res 39(13):5790–5799. doi:10.1093/nar/gkr151 PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Kim HJ, Lee HJ, Kim H, Cho SW, Kim JS (2009) Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res 19(7):1279–1288. doi:10.1101/gr.089417.108 PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Schmid-Burgk JL, Schmidt T, Kaiser V, Honing K, Hornung V (2013) A ligation-independent cloning technique for high-throughput assembly of transcription activator-like effector genes. Nat Biotechnol 31(1):76–81. doi:10.1038/nbt.2460 PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Schmid-Burgk JL, Xie Z, Frank S, Virreira Winter S, Mitschka S, Kolanus W, Murray A, Benenson Y (2012) Rapid hierarchical assembly of medium-size DNA cassettes. Nucleic Acids Res 40(12):e92. doi:10.1093/nar/gks236 PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Aslanidis C, de Jong PJ (1990) Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res 18(20):6069–6074PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jonathan L. Schmid-Burgk
    • 1
  • Tobias Schmidt
    • 1
  • Veit Hornung
    • 1
  1. 1.Institute of Molecular Medicine, University HospitalUniversity of BonnBonnGermany

Personalised recommendations