Strategies to Increase Genome Editing Frequencies and to Facilitate the Identification of Edited Cells

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1239)

Abstract

The power of genome editing is increasingly recognized as it has become more accessible to a wide range of scientists and a wider range of uses has been reported. Nonetheless, an important practical aspect of the strategy is develop methods to increase the frequency of genome editing or methods that enrich for genome-edited cells such that they can be more easily identified. This chapter discusses several different approaches including the use of cold-shock, exonucleases, surrogate markers, specialized donor vectors, and oligonucleotides to enhance the frequency of genome editing or to facilitate the identification of genome-edited cells.

Key words

Genome editing Engineered nuclease Homologous recombination Nonhomologous end joining Homing endonuclease Zinc finger nuclease TAL effector nuclease CRISPR/Cas9 

References

  1. 1.
    Paques F, Duchateau P (2007) Meganucleases and DNA double-strand break-induced recombination: perspectives for gene therapy. Curr Gene Ther 7(1):49–66PubMedCrossRefGoogle Scholar
  2. 2.
    Chan SH, Stoddard BL, Xu SY (2011) Natural and engineered nicking endonucleases–from cleavage mechanism to engineering of strand-specificity. Nucleic Acids Res 39(1):1–18. doi: 10.1093/nar/gkq742 PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Porteus MH, Carroll D (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23(8):967–973. doi: 10.1038/nbt1125 PubMedCrossRefGoogle Scholar
  4. 4.
    Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11(9):636–646. doi: 10.1038/nrg2842 PubMedCrossRefGoogle Scholar
  5. 5.
    Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186(2):757–761. doi: 10.1534/genetics.110.120717 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Doyle EL, Stoddard BL, Voytas DF, Bogdanove AJ (2013) TAL effectors: highly adaptable phytobacterial virulence factors and readily engineered DNA-targeting proteins. Trends Cell Biol 23(8):390–398. doi: 10.1016/j.tcb.2013.04.003 PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Damian M, Porteus MH (2013) A crisper look at genome editing: RNA-guided genome modification. Mol Ther 21(4):720–722. doi: 10.1038/mt.2013.46 PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. doi: 10.1126/science.1231143 PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Mali P, Esvelt KM, Church GM (2013) Cas9 as a versatile tool for engineering biology. Nat Methods 10(10):957–963. doi: 10.1038/nmeth.2649 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Boissel S, Jarjour J, Astrakhan A, Adey A, Gouble A, Duchateau P, Shendure J, Stoddard BL, Certo MT, Baker D, Scharenberg AM (2013) megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering. Nucleic Acids Res. doi:10.1093/nar/gkt1224Google Scholar
  11. 11.
    Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39(12):e82. doi: 10.1093/nar/gkr218 PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153(4):910–918. doi: 10.1016/j.cell.2013.04.025 PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Ding Q, Regan SN, Xia Y, Oostrom LA, Cowan CA, Musunuru K (2013) Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell 12(4):393–394. doi: 10.1016/j.stem.2013.03.006 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Pruett-Miller SM, Connelly JP, Maeder ML, Joung JK, Porteus MH (2008) Comparison of zinc finger nucleases for use in gene targeting in mammalian cells. Mol Ther 16(4):707–717. doi: 10.1038/mt.2008.20 PubMedCrossRefGoogle Scholar
  15. 15.
    Doyon Y, Choi VM, Xia DF, Vo TD, Gregory PD, Holmes MC (2010) Transient cold shock enhances zinc-finger nuclease-mediated gene disruption. Nat Methods 7(6):459–460. doi: 10.1038/nmeth.1456 PubMedCrossRefGoogle Scholar
  16. 16.
    Carlson DF, Fahrenkrug SC, Hackett PB (2012) Targeting DNA with fingers and TALENs. Mol Therapy Nucleic Acids 1:e3. doi: 10.1038/mtna.2011.5 CrossRefGoogle Scholar
  17. 17.
    Certo MT, Gwiazda KS, Kuhar R, Sather B, Curinga G, Mandt T, Brault M, Lambert AR, Baxter SK, Jacoby K, Ryu BY, Kiem HP, Gouble A, Paques F, Rawlings DJ, Scharenberg AM (2012) Coupling endonucleases with DNA end-processing enzymes to drive gene disruption. Nat Methods 9(10):973–975. doi: 10.1038/nmeth.2177 PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Certo MT, Ryu BY, Annis JE, Garibov M, Jarjour J, Rawlings DJ, Scharenberg AM (2011) Tracking genome engineering outcome at individual DNA breakpoints. Nat Methods 8(8):671–676. doi: 10.1038/nmeth.1648 PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Kim H, Kim MS, Wee G, Lee CI, Kim H, Kim JS (2013) Magnetic separation and antibiotics selection enable enrichment of cells with ZFN/TALEN-induced mutations. PLoS One 8(2):e56476. doi: 10.1371/journal.pone.0056476 PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Kim H, Um E, Cho SR, Jung C, Kim H, Kim JS (2011) Surrogate reporters for enrichment of cells with nuclease-induced mutations. Nat Methods 8(11):941–943. doi: 10.1038/nmeth.1733 PubMedCrossRefGoogle Scholar
  21. 21.
    Yusa K (2013) Seamless genome editing in human pluripotent stem cells using custom endonuclease-based gene targeting and the piggyBac transposon. Nat Protoc 8(10):2061–2078. doi: 10.1038/nprot.2013.126 PubMedCrossRefGoogle Scholar
  22. 22.
    Zou J, Maeder ML, Mali P, Pruett-Miller SM, Thibodeau-Beganny S, Chou BK, Chen G, Ye Z, Park IH, Daley GQ, Porteus MH, Joung JK, Cheng L (2009) Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell 5(1):97–110. doi: 10.1016/j.stem.2009.05.023 PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Russell DW, Hirata RK (1998) Human gene targeting by viral vectors. Nat Genet 18(4):325–330. doi: 10.1038/ng0498-325 PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Chen F, Pruett-Miller SM, Huang Y, Gjoka M, Duda K, Taunton J, Collingwood TN, Frodin M, Davis GD (2011) High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat Methods 8(9):753–755. doi: 10.1038/nmeth.1653 PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Yang L, Guell M, Byrne S, Yang JL, De Los AA, Mali P, Aach J, Kim-Kiselak C, Briggs AW, Rios X, Huang PY, Daley G, Church G (2013) Optimization of scarless human stem cell genome editing. Nucleic Acids Res 41(19):9049–9061. doi: 10.1093/nar/gkt555 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Hematology/Oncology/Stem Cell Transplantation/Cancer Biology, Department of Pediatrics, School of MedicineStanford UniversityStanfordUSA

Personalised recommendations