Epigenome-Wide Association Studies (EWAS): Past, Present, and Future

  • James M. Flanagan
Part of the Methods in Molecular Biology book series (MIMB, volume 1238)


Just as genome-wide association studies (GWAS) grew from the field of genetic epidemiology, so too do epigenome-wide association studies (EWAS) derive from the burgeoning field of epigenetic epidemiology, with both aiming to understand the molecular basis for disease risk. While genetic risk of disease is currently unmodifiable, there is hope that epigenetic risk may be reversible and or modifiable. This review will take a look back at the origins of this field and revisit the past early efforts to conduct EWAS using the 27k Illumina methylation beadarrays, to the present where most investigators are using the 450k Illumina beadarrays and finally to the future where next generation sequencing based methods beckon. There have been numerous diseases, exposures and lifestyle factors investigated with EWAS, with several significant associations now identified. However, much like the GWAS studies, EWAS are likely to require large international consortium-based approaches to reach the numbers of subjects, and statistical and scientific rigor, required for robust findings.

Key words

EWAS Methylation Risk Biomarker Cancer Peripheral blood Exposures 



JMF is funded by Breast Cancer Campaign and Cancer Research UK.


  1. 1.
    Hindorff LA, MacArthur J, Morales J, Junkins HA, Hall PN, Klemm AK et al. A Catalog of Published Genome-Wide Association Studies. Accessed 9 Jan 2014
  2. 2.
    Michailidou K, Hall P, Gonzalez-Neira A, Ghoussaini M, Dennis J, Milne RL et al (2013) Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet 45:353–361, 361e351–352Google Scholar
  3. 3.
    Pharoah PD, Tsai YY, Ramus SJ, Phelan CM, Goode EL, Lawrenson K et al (2013) GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nat Genet 45:362–370, 370e361–362Google Scholar
  4. 4.
    Eeles RA, Olama AA, Benlloch S, Saunders EJ, Leongamornlert DA, Tymrakiewicz M et al (2013) Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. Nat Genet 45:385–391, 391e381–382Google Scholar
  5. 5.
    Issa JP (2000) The epigenetics of colorectal cancer. Ann N Y Acad Sci 910:140–153, discussion 153–155PubMedCrossRefGoogle Scholar
  6. 6.
    Jablonka E, Lamb MJ (2002) The changing concept of epigenetics. Ann N Y Acad Sci 981:82–96PubMedCrossRefGoogle Scholar
  7. 7.
    Michels KB (2010) The promises and challenges of epigenetic epidemiology. Exp Gerontol 45:297–301PubMedCrossRefGoogle Scholar
  8. 8.
    Mill J, Heijmans BT (2013) From promises to practical strategies in epigenetic epidemiology. Nat Rev Genet 14:585–594PubMedCrossRefGoogle Scholar
  9. 9.
    Relton CL, Davey Smith G (2010) Epigenetic epidemiology of common complex disease: prospects for prediction, prevention, and treatment. PLoS Med 7:e1000356PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Vaiserman AM, Voitenko VP, Mekhova LV (2011) [Epigenetic epidemiology of age-related diseases]. Ontogenez 42:30–50PubMedGoogle Scholar
  11. 11.
    Verma M, Rogers S, Divi RL, Schully SD, Nelson S, Joseph Su L, et al (2014) Epigenetic research in cancer epidemiology: trends, opportunities, and challenges. Cancer Epidemiol Biomarkers Prev 23:223–233Google Scholar
  12. 12.
    Waterland RA (2008) Epigenetic epidemiology of obesity: application of epigenomic technology. Nutr Rev 66(Suppl 1):S21–S23PubMedCrossRefGoogle Scholar
  13. 13.
    Waterland RA, Michels KB (2007) Epigenetic epidemiology of the developmental origins hypothesis. Annu Rev Nutr 27:363–388PubMedCrossRefGoogle Scholar
  14. 14.
    Rakyan VK, Down TA, Balding DJ, Beck S (2011) Epigenome-wide association studies for common human diseases. Nat Rev Genet 12:529–541PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Patel CJ, Bhattacharya J, Butte AJ (2010) An Environment-Wide Association Study (EWAS) on type 2 diabetes mellitus. PLoS One 5:e10746PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Bogdanos DP, Smyk DS, Invernizzi P, Rigopoulou EI, Blank M, Pouria S et al (2013) Infectome: a platform to trace infectious triggers of autoimmunity. Autoimmun Rev 12:726–740PubMedCrossRefGoogle Scholar
  17. 17.
    Rappaport SM (2012) Biomarkers intersect with the exposome. Biomarkers 17:483–489PubMedCrossRefGoogle Scholar
  18. 18.
    Barnett C, Vanicek N, Polman R, Hancock A, Brown B, Smith L et al (2009) Kinematic gait adaptations in unilateral transtibial amputees during rehabilitation. Prosthet Orthot Int 33:135–147PubMedCrossRefGoogle Scholar
  19. 19.
    Cui H, Cruz-Correa M, Giardiello FM, Hutcheon DF, Kafonek DR, Brandenburg S et al (2003) Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science 299:1753–1755PubMedCrossRefGoogle Scholar
  20. 20.
    Cui H, Onyango P, Brandenburg S, Wu Y, Hsieh CL, Feinberg AP (2002) Loss of imprinting in colorectal cancer linked to hypomethylation of H19 and IGF2. Cancer Res 62:6442–6446PubMedGoogle Scholar
  21. 21.
    Cruz-Correa M, Cui H, Giardiello FM, Powe NR, Hylind L, Robinson A et al (2004) Loss of imprinting of insulin growth factor II gene: a potential heritable biomarker for colon neoplasia predisposition. Gastroenterology 126:964–970PubMedCrossRefGoogle Scholar
  22. 22.
    Jirtle RL (2004) IGF2 loss of imprinting: a potential heritable risk factor for colorectal cancer. Gastroenterology 126:1190–1193PubMedCrossRefGoogle Scholar
  23. 23.
    Ito Y, Koessler T, Ibrahim AE, Rai S, Vowler SL, Abu-Amero S et al (2008) Somatically acquired hypomethylation of IGF2 in breast and colorectal cancer. Hum Mol Genet 17:2633–2643PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Chan TL, Yuen ST, Kong CK, Chan YW, Chan AS, Ng WF et al (2006) Heritable germline epimutation of MSH2 in a family with hereditary nonpolyposis colorectal cancer. Nat Genet 38:1178–1183PubMedCrossRefGoogle Scholar
  25. 25.
    Suter CM, Martin DI, Ward RL (2004) Germline epimutation of MLH1 in individuals with multiple cancers. Nat Genet 36:497–501PubMedCrossRefGoogle Scholar
  26. 26.
    Kwok CT, Vogelaar IP, van Zelst-Stams WA, Mensenkamp AR, Ligtenberg MJ, Rapkins RW, et al (2014) The MLH1 c.-27C>A and c.85G>T variants are linked to dominantly inherited MLH1 epimutation and are borne on a European ancestral haplotype. Eur J Hum Genet 22:617–624Google Scholar
  27. 27.
    Ligtenberg MJ, Kuiper RP, Chan TL, Goossens M, Hebeda KM, Voorendt M et al (2009) Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3' exons of TACSTD1. Nat Genet 41:112–117PubMedCrossRefGoogle Scholar
  28. 28.
    Brennan K, Garcia-Closas M, Orr N, Fletcher O, Jones M, Ashworth A et al (2012) Intragenic ATM methylation in peripheral blood DNA as a biomarker of breast cancer risk. Cancer Res 72:2304–2313PubMedCrossRefGoogle Scholar
  29. 29.
    Widschwendter M, Apostolidou S, Raum E, Rothenbacher D, Fiegl H, Menon U et al (2008) Epigenotyping in peripheral blood cell DNA and breast cancer risk: a proof of principle study. PLoS One 3:e2656PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Iwamoto T, Yamamoto N, Taguchi T, Tamaki Y, Noguchi S. (2011) BRCA1 promoter methylation in peripheral blood cells is associated with increased risk of breast cancer with BRCA1 promoter methylation. Breast Cancer Res Treat 129:69–77Google Scholar
  31. 31.
    Snell C, Krypuy M, Wong EM, Loughrey MB, Dobrovic A (2008) BRCA1 promoter methylation in peripheral blood DNA of mutation negative familial breast cancer patients with a BRCA1 tumour phenotype. Breast Cancer Res 10:R12PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Wong EM, Southey MC, Fox SB, Brown MA, Dowty JG, Jenkins MA et al (2011) Constitutional methylation of the BRCA1 promoter is specifically associated with BRCA1 mutation-associated pathology in early-onset breast cancer. Cancer Prev Res (Phila) 4:23–33CrossRefGoogle Scholar
  33. 33.
    Heijmans BT, Mill J (2012) Commentary: the seven plagues of epigenetic epidemiology. Int J Epidemiol 41:74–78PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Michels KB, Binder AM, Dedeurwaerder S, Epstein CB, Greally JM, Gut I et al (2013) Recommendations for the design and analysis of epigenome-wide association studies. Nat Methods 10:949–955PubMedCrossRefGoogle Scholar
  35. 35.
    Verma M (2012) Epigenome-Wide Association Studies (EWAS) in Cancer. Curr Genomics 13:308–313PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Wilhelm-Benartzi CS, Koestler DC, Karagas MR, Flanagan JM, Christensen BC, Kelsey KT et al (2013) Review of processing and analysis methods for DNA methylation array data. Br J Cancer 109:1394–1402PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Bell JT, Saffery R (2012) The value of twins in epigenetic epidemiology. Int J Epidemiol 41:140–150PubMedCrossRefGoogle Scholar
  38. 38.
    Bock C (2012) Analysing and interpreting DNA methylation data. Nat Rev Genet 13:705–719PubMedCrossRefGoogle Scholar
  39. 39.
    Jaffe AE, Murakami P, Lee H, Leek JT, Fallin MD, Feinberg AP et al (2012) Bump hunting to identify differentially methylated regions in epigenetic epidemiology studies. Int J Epidemiol 41:200–209PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Ng JW, Barrett LM, Wong A, Kuh D, Smith GD, Relton CL (2012) The role of longitudinal cohort studies in epigenetic epidemiology: challenges and opportunities. Genome Biol 13:246PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Ong ML, Holbrook JD. (2014) Novel region discovery method for Infinium 450k DNA methylation data reveals changes associated with aging in muscle and neuronal pathways. Aging Cell 13:142–155Google Scholar
  42. 42.
    Ramagopalan SV, Rakyan VK (2013) The promise and challenges of blood spot methylomics. Epigenetics 8:775–777PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Talens RP, Boomsma DI, Tobi EW, Kremer D, Jukema JW, Willemsen G et al (2010) Variation, patterns, and temporal stability of DNA methylation: considerations for epigenetic epidemiology. FASEB J 24:3135–3144PubMedCrossRefGoogle Scholar
  44. 44.
    Teschendorff AE, Marabita F, Lechner M, Bartlett T, Tegner J, Gomez-Cabrero D et al (2013) A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450k DNA methylation data. Bioinformatics 29:189–196Google Scholar
  45. 45.
    Zhuang J, Widschwendter M, Teschendorff AE (2012) A comparison of feature selection and classification methods in DNA methylation studies using the Illumina Infinium platform. BMC Bioinformatics 13:59PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Lowe R, Gemma C, Beyan H, Hawa MI, Bazeos A, Leslie RD et al (2013) Buccals are likely to be a more informative surrogate tissue than blood for epigenome-wide association studies. Epigenetics 8:445–454PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Koestler DC, Christensen B, Karagas MR, Marsit CJ, Langevin SM, Kelsey KT et al (2013) Blood-based profiles of DNA methylation predict the underlying distribution of cell types: a validation analysis. Epigenetics 8:816–826PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Koestler DC, Marsit CJ, Christensen BC, Accomando W, Langevin SM, Houseman EA et al (2012) Peripheral blood immune cell methylation profiles are associated with nonhematopoietic cancers. Cancer Epidemiol Biomarkers Prev 21:1293–1302PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlen SE, Greco D et al (2012) Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLoS One 7:e41361PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH et al (2012) DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 13:86PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Liu Y, Aryee MJ, Padyukov L, Fallin MD, Hesselberg E, Runarsson A et al (2013) Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol 31:142–147PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Bjornsson HT, Sigurdsson MI, Fallin MD, Irizarry RA, Aspelund T, Cui H et al (2008) Intra-individual change over time in DNA methylation with familial clustering. JAMA 299:2877–2883PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Feinberg AP, Irizarry RA, Fradin D, Aryee MJ, Murakami P, Aspelund T et al (2010) Personalized epigenomic signatures that are stable over time and covary with body mass index. Sci Transl Med 2:49ra67PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Florath I, Butterbach K, Müller H, Bewerunge-Hudler M, Brenner H. (2014) Cross-sectional and longitudinal changes in DNA methylation with age: an epigenome-wide analysis revealing over 60 novel age-associated CpG sites. Hum Mol Genet 23:1186–1201Google Scholar
  55. 55.
    Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 102:10604–10609PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Bell JT, Tsai PC, Yang TP, Pidsley R, Nisbet J, Glass D et al (2012) Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population. PLoS Genet 8:e1002629PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Bell CG, Finer S, Lindgren CM, Wilson GA, Rakyan VK, Teschendorff AE et al (2010) Integrated genetic and epigenetic analysis identifies haplotype-specific methylation in the FTO type 2 diabetes and obesity susceptibility locus. PLoS One 5:e14040PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Schalkwyk LC, Meaburn EL, Smith R, Dempster EL, Jeffries AR, Davies MN et al (2010) Allelic skewing of DNA methylation is widespread across the genome. Am J Hum Genet 86:196–212PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Hitchins MP, Rapkins RW, Kwok CT, Srivastava S, Wong JJ, Khachigian LM et al (2011) Dominantly inherited constitutional epigenetic silencing of MLH1 in a cancer-affected family is linked to a single nucleotide variant within the 5'UTR. Cancer Cell 20:200–213PubMedCrossRefGoogle Scholar
  60. 60.
    Rakyan VK, Down TA, Maslau S, Andrew T, Yang TP, Beyan H et al (2010) Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res 20:434–439PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Breitling LP, Yang R, Korn B, Burwinkel B, Brenner H (2011) Tobacco-smoking-related differential DNA methylation: 27k discovery and replication. Am J Hum Genet 88:450–457Google Scholar
  62. 62.
    Shenker NS, Polidoro S, van Veldhoven K, Sacerdote C, Ricceri F, Birrell MA et al (2013) Epigenome-wide association study in the European Prospective Investigation into Cancer and Nutrition (EPIC-Turin) identifies novel genetic loci associated with smoking. Hum Mol Genet 22:843–851PubMedCrossRefGoogle Scholar
  63. 63.
    Zhang Y, Yang R, Burwinkel B, Breitling LP, Brenner H. (2014) F2RL3 methylation as a biomarker of current and lifetime smoking exposures. Environ Health Perspect122:131–137Google Scholar
  64. 64.
    Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Gayther SA, Apostolidou S et al (2009) An epigenetic signature in peripheral blood predicts active ovarian cancer. PLoS One 4:e8274PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Marsit CJ, Koestler DC, Christensen BC, Karagas MR, Houseman EA, Kelsey KT (2011) DNA methylation array analysis identifies profiles of blood-derived DNA methylation associated with bladder cancer. J Clin Oncol 29:1133–1139PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Langevin SM, Koestler DC, Christensen BC, Butler RA, Wiencke JK, Nelson HH et al (2012) Peripheral blood DNA methylation profiles are indicative of head and neck squamous cell carcinoma: an epigenome-wide association study. Epigenetics 7:291–299PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Xu Z, Bolick SC, DeRoo LA, Weinberg CR, Sandler DP, Taylor JA (2013) Epigenome-wide association study of breast cancer using prospectively collected sister study samples. J Natl Cancer Inst 105:694–700PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Garcia-Closas M, Gail MH, Kelsey KT, Ziegler RG (2013) Searching for blood DNA methylation markers of breast cancer risk and early detection. J Natl Cancer Inst 105:678–680PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Brennan K, Flanagan JM (2012) Is there a link between genome-wide hypomethylation in blood and cancer risk? Cancer Prev Res (Phila) 5:1345–1357CrossRefGoogle Scholar
  70. 70.
    Rakyan VK, Beyan H, Down TA, Hawa MI, Maslau S, Aden D et al (2011) Identification of type 1 diabetes-associated DNA methylation variable positions that precede disease diagnosis. PLoS Genet 7:e1002300PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Hidalgo B, Irvin MR, Sha J, Zhi D, Aslibekyan S, Absher D, et al (2014) Epigenome-wide association study of fasting measures of glucose, insulin, and HOMA-IR in the Genetics of Lipid Lowering Drugs and Diet Network study. Diabetes 63:801–807Google Scholar
  72. 72.
    Hosokawa M, Yoshikawa T, Negishi R, Yoshino T, Koh Y, Kenmotsu H et al (2013) Microcavity array system for size-based enrichment of circulating tumor cells from the blood of patients with small-cell lung cancer. Anal Chem 85:5692–5698PubMedCrossRefGoogle Scholar
  73. 73.
    Shenker NS, Ueland PM, Polidoro S, van Veldhoven K, Ricceri F, Brown R et al (2013) DNA methylation as a long-term biomarker of exposure to tobacco smoke. Epidemiology 24:712–716PubMedCrossRefGoogle Scholar
  74. 74.
    Philibert RA, Beach SR, Brody GH (2012) Demethylation of the aryl hydrocarbon receptor repressor as a biomarker for nascent smokers. Epigenetics 7:1331–1338PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Joubert BR, Haberg SE, Nilsen RM, Wang X, Vollset SE, Murphy SK et al (2012) 450k epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect 120:1425–1431Google Scholar
  76. 76.
    Wan ES, Qiu W, Baccarelli A, Carey VJ, Bacherman H, Rennard SI et al (2012) Cigarette smoking behaviors and time since quitting are associated with differential DNA methylation across the human genome. Hum Mol Genet 21:3073–3082PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Monick MM, Beach SR, Plume J, Sears R, Gerrard M, Brody GH et al (2012) Coordinated changes in AHRR methylation in lymphoblasts and pulmonary macrophages from smokers. Am J Med Genet B Neuropsychiatr Genet 159B:141–151PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Philibert RA, Sears RA, Powers LS, Nash E, Bair T, Gerke AK et al (2012) Coordinated DNA methylation and gene expression changes in smoker alveolar macrophages: specific effects on VEGF receptor 1 expression. J Leukoc Biol 92:621–631PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Haworth KE, Farrell WE, Emes RD, Ismail KM, Carroll WD, Borthwick HA et al (2013) Combined influence of gene-specific cord blood methylation and maternal smoking habit on birth weight. Epigenomics 5:37–49PubMedCrossRefGoogle Scholar
  80. 80.
    Nishihara R, Morikawa T, Kuchiba A, Lochhead P, Yamauchi M, Liao X et al (2013) A prospective study of duration of smoking cessation and colorectal cancer risk by epigenetics-related tumor classification. Am J Epidemiol 178:84–100PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Philibert RA, Beach SR, Lei MK, Brody GH (2013) Changes in DNA methylation at the aryl hydrocarbon receptor repressor may be a new biomarker for smoking. Clin Epigenetics 5:19PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Sun YV, Smith AK, Conneely KN, Chang Q, Li W, Lazarus A et al (2013) Epigenomic association analysis identifies smoking-related DNA methylation sites in African Americans. Hum Genet 132:1027–1037PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Zeilinger S, Kuhnel B, Klopp N, Baurecht H, Kleinschmidt A, Gieger C et al (2013) Tobacco smoking leads to extensive genome-wide changes in DNA methylation. PLoS One 8:e63812PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Weisenberger DJ, Shen H et al (2010) Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res 20:440–446PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    West J, Beck S, Wang X, Teschendorff AE (2013) An integrative network algorithm identifies age-associated differential methylation interactome hotspots targeting stem-cell differentiation pathways. Sci Rep 3:1630PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S et al (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 49:359–367PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Heyn H, Carmona FJ, Gomez A, Ferreira HJ, Bell JT, Sayols S, et al (2013) DNA methylation profiling in breast cancer discordant identical twins identifies DOK7 as novel epigenetic biomarker. Carcinogenesis 34:102–108Google Scholar
  88. 88.
    Garagnani P, Bacalini MG, Pirazzini C, Gori D, Giuliani C, Mari D et al (2012) Methylation of ELOVL2 gene as a new epigenetic marker of age. Aging Cell 11:1132–1134PubMedCrossRefGoogle Scholar
  89. 89.
    Esteller M (2011) Epigenetic changes in cancer. F1000 Biol Rep 3:9PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Brennan K, Flanagan JM (2012) Epigenetic epidemiology for cancer risk: harnessing germline epigenetic variation. Methods Mol Biol 863:439–465PubMedCrossRefGoogle Scholar
  91. 91.
    Beck S (2010) Taking the measure of the methylome. Nat Biotechnol 28:1026–1028PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Epigenetics Unit, Division of Cancer, Department of Surgery and Cancer, Faculty of MedicineImperial College LondonLondonUK

Personalised recommendations