Advertisement

Epigenetics in Breast and Prostate Cancer

  • Yanyuan Wu
  • Marianna Sarkissyan
  • Jaydutt V. Vadgama
Part of the Methods in Molecular Biology book series (MIMB, volume 1238)

Abstract

Most recent investigations into cancer etiology have identified a key role played by epigenetics. Specifically, aberrant DNA and histone modifications which silence tumor suppressor genes or promote oncogenes have been demonstrated in multiple cancer models. While the role of epigenetics in several solid tumor cancers such as colorectal cancer are well established, there is emerging evidence that epigenetics also plays a critical role in breast and prostate cancer. In breast cancer, DNA methylation profiles have been linked to hormone receptor status and tumor progression. Similarly in prostate cancer, epigenetic patterns have been associated with androgen receptor status and response to therapy. The regulation of key receptor pathways and activities which affect clinical therapy treatment options by epigenetics renders this field high priority for elucidating mechanisms and potential targets. A new set of methylation arrays are now available to screen epigenetic changes and provide the cutting-edge tools needed to perform such investigations. The role of nutritional interventions affecting epigenetic changes particularly holds promise. Ultimately, determining the causes and outcomes from epigenetic changes will inform translational applications for utilization as biomarkers for risk and prognosis as well as candidates for therapy.

Key words

Breast cancer Prostate cancer CpG (cytosine–guanine) DNA methylation Epigenetic changes Disparities 

Notes

Acknowledgments

Support from NIH (Grant numbers: NCI U56CA101599-01; CA15083-25S3; U54CA14393; NIMHD U54MD007598; and NCATS CTSI UL1TR000124 to J.V.V., and a NIMHD-CRECD 5MD007610 to Y.W.).

References

  1. 1.
    Issa JP (2004) CpG island methylator phenotype in cancer. Nat Rev Cancer 4(12):988–993. doi: 10.1038/nrc1507 PubMedGoogle Scholar
  2. 2.
    Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer 4(2):143–153. doi: 10.1038/nrc1279 PubMedGoogle Scholar
  3. 3.
    Urnov FD, Wolffe AP (2001) Above and within the genome: epigenetics past and present. J Mammary Gland Biol Neoplasia 6(2):153–167PubMedGoogle Scholar
  4. 4.
    Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254. doi: 10.1038/ng1089 PubMedGoogle Scholar
  5. 5.
    Feinberg AP, Vogelstein B (1983) Hypomethylation of ras oncogenes in primary human cancers. Biochem Biophys Res Commun 111(1):47–54PubMedGoogle Scholar
  6. 6.
    Jones PA (2002) DNA methylation and cancer. Oncogene 21(35):5358–5360. doi: 10.1038/sj.onc.1205597 PubMedGoogle Scholar
  7. 7.
    Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3(6):415–428. doi: 10.1038/nrg816 PubMedGoogle Scholar
  8. 8.
    Herman JG, Umar A, Polyak K, Graff JR, Ahuja N, Issa JP, Markowitz S, Willson JK, Hamilton SR, Kinzler KW, Kane MF, Kolodner RD, Vogelstein B, Kunkel TA, Baylin SB (1998) Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci U S A 95(12):6870–6875PubMedCentralPubMedGoogle Scholar
  9. 9.
    Esteller M (2008) Epigenetics in cancer. N Engl J Med 358(11):1148–1159. doi: 10.1056/NEJMra072067 PubMedGoogle Scholar
  10. 10.
    Esteller M, Silva JM, Dominguez G, Bonilla F, Matias-Guiu X, Lerma E, Bussaglia E, Prat J, Harkes IC, Repasky EA, Gabrielson E, Schutte M, Baylin SB, Herman JG (2000) Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst 92(7):564–569PubMedGoogle Scholar
  11. 11.
    Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349(21):2042–2054. doi: 10.1056/NEJMra023075 PubMedGoogle Scholar
  12. 12.
    Kass SU, Pruss D, Wolffe AP (1997) How does DNA methylation repress transcription? Trends Genet 13(11):444–449PubMedGoogle Scholar
  13. 13.
    Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB (1999) Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21(1):103–107. doi: 10.1038/5047 PubMedGoogle Scholar
  14. 14.
    Timp W, Feinberg AP (2013) Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nat Rev Cancer 13(7):497–510. doi: 10.1038/nrc3486 PubMedGoogle Scholar
  15. 15.
    Bachman KE, Park BH, Rhee I, Rajagopalan H, Herman JG, Baylin SB, Kinzler KW, Vogelstein B (2003) Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell 3(1):89–95PubMedGoogle Scholar
  16. 16.
    Wu Y, Alvarez M, Slamon DJ, Koeffler P, Vadgama JV (2010) Caspase 8 and maspin are downregulated in breast cancer cells due to CpG site promoter methylation. BMC Cancer 10:32. doi: 10.1186/1471-2407-10-32 PubMedCentralPubMedGoogle Scholar
  17. 17.
    Mishra DK, Chen Z, Wu Y, Sarkissyan M, Koeffler HP, Vadgama JV (2010) Global methylation pattern of genes in androgen-sensitive and androgen-independent prostate cancer cells. Mol Cancer Ther 9(1):33–45. doi: 10.1158/1535-7163.mct-09-0486 PubMedCentralPubMedGoogle Scholar
  18. 18.
    Jovanovic J, Ronneberg JA, Tost J, Kristensen V (2010) The epigenetics of breast cancer. Mol Oncol 4(3):242–254. doi: 10.1016/j.molonc.2010.04.002 PubMedGoogle Scholar
  19. 19.
    Tian J, Lee SO, Liang L, Luo J, Huang CK, Li L, Niu Y, Chang C (2012) Targeting the unique methylation pattern of androgen receptor (AR) promoter in prostate stem/progenitor cells with 5-aza-2'-deoxycytidine (5-AZA) leads to suppressed prostate tumorigenesis. J Biol Chem 287(47):39954–39966. doi: 10.1074/jbc.M112.395574 PubMedCentralPubMedGoogle Scholar
  20. 20.
    Yang M, Park JY (2012) DNA methylation in promoter region as biomarkers in prostate cancer. Methods Mol Biol 863:67–109. doi: 10.1007/978-1-61779-612-8_5 PubMedCentralPubMedGoogle Scholar
  21. 21.
    Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin 64(1):9–29. doi: 10.3322/caac.21208 PubMedGoogle Scholar
  22. 22.
    Hinshelwood RA, Clark SJ (2008) Breast cancer epigenetics: normal human mammary epithelial cells as a model system. J Mol Med 86(12):1315–1328. doi: 10.1007/s00109-008-0386-3 PubMedGoogle Scholar
  23. 23.
    Bediaga NG, Acha-Sagredo A, Guerra I, Viguri A, Albaina C, Ruiz Diaz I, Rezola R, Alberdi MJ, Dopazo J, Montaner D, Renobales M, Fernandez AF, Field JK, Fraga MF, Liloglou T, de Pancorbo MM (2010) DNA methylation epigenotypes in breast cancer molecular subtypes. Breast Cancer Res 12(5):R77. doi: 10.1186/bcr2721 PubMedCentralPubMedGoogle Scholar
  24. 24.
    van Hoesel AQ, Sato Y, Elashoff DA, Turner RR, Giuliano AE, Shamonki JM, Kuppen PJ, van de Velde CJ, Hoon DS (2013) Assessment of DNA methylation status in early stages of breast cancer development. Br J Cancer 108(10):2033–2038. doi: 10.1038/bjc.2013.136 PubMedCentralPubMedGoogle Scholar
  25. 25.
    Park SY, Kwon HJ, Lee HE, Ryu HS, Kim SW, Kim JH, Kim IA, Jung N, Cho NY, Kang GH (2011) Promoter CpG island hypermethylation during breast cancer progression. Virchows Arch 458(1):73–84. doi: 10.1007/s00428-010-1013-6 PubMedGoogle Scholar
  26. 26.
    Klajic J, Fleischer T, Dejeux E, Edvardsen H, Warnberg F, Bukholm I, Lonning PE, Solvang H, Borresen-Dale AL, Tost J, Kristensen VN (2013) Quantitative DNA methylation analyses reveal stage dependent DNA methylation and association to clinico-pathological factors in breast tumors. BMC Cancer 13:456. doi: 10.1186/1471-2407-13-456 PubMedCentralPubMedGoogle Scholar
  27. 27.
    Hu M, Yao J, Cai L, Bachman KE, van den Brule F, Velculescu V, Polyak K (2005) Distinct epigenetic changes in the stromal cells of breast cancers. Nat Genet 37(8):899–905. doi: 10.1038/ng1596 PubMedGoogle Scholar
  28. 28.
    Feng W, Shen L, Wen S, Rosen DG, Jelinek J, Hu X, Huan S, Huang M, Liu J, Sahin AA, Hunt KK, Bast RC Jr, Shen Y, Issa JP, Yu Y (2007) Correlation between CpG methylation profiles and hormone receptor status in breast cancers. Breast Cancer Res 9(4):R57. doi: 10.1186/bcr1762 PubMedCentralPubMedGoogle Scholar
  29. 29.
    Widschwendter M, Siegmund KD, Muller HM, Fiegl H, Marth C, Muller-Holzner E, Jones PA, Laird PW (2004) Association of breast cancer DNA methylation profiles with hormone receptor status and response to tamoxifen. Cancer Res 64(11):3807–3813. doi: 10.1158/0008-5472.CAN-03-3852 PubMedGoogle Scholar
  30. 30.
    Rodriguez-Antona C, Gomez A, Karlgren M, Sim SC, Ingelman-Sundberg M (2010) Molecular genetics and epigenetics of the cytochrome P450 gene family and its relevance for cancer risk and treatment. Hum Genet 127(1):1–17. doi: 10.1007/s00439-009-0748-0 PubMedGoogle Scholar
  31. 31.
    Brodie AM, Njar VC (1998) Aromatase inhibitors in advanced breast cancer: mechanism of action and clinical implications. J Steroid Biochem Mol Biol 66(1–2):1–10PubMedGoogle Scholar
  32. 32.
    Johnston SR, Dowsett M (2003) Aromatase inhibitors for breast cancer: lessons from the laboratory. Nat Rev Cancer 3(11):821–831. doi: 10.1038/nrc1211 PubMedGoogle Scholar
  33. 33.
    Musgrove EA, Sutherland RL (2009) Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer 9(9):631–643. doi: 10.1038/nrc2713 PubMedGoogle Scholar
  34. 34.
    Pathiraja TN, Stearns V, Oesterreich S (2010) Epigenetic regulation in estrogen receptor positive breast cancer–role in treatment response. J Mammary Gland Biol Neoplasia 15(1):35–47. doi: 10.1007/s10911-010-9166-0 PubMedCentralPubMedGoogle Scholar
  35. 35.
    Ottaviano YL, Issa JP, Parl FF, Smith HS, Baylin SB, Davidson NE (1994) Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells. Cancer Res 54(10):2552–2555PubMedGoogle Scholar
  36. 36.
    Lapidus RG, Nass SJ, Butash KA, Parl FF, Weitzman SA, Graff JG, Herman JG, Davidson NE (1998) Mapping of ER gene CpG island methylation-specific polymerase chain reaction. Cancer Res 58(12):2515–2519PubMedGoogle Scholar
  37. 37.
    Martens JW, Nimmrich I, Koenig T, Look MP, Harbeck N, Model F, Kluth A, Bolt-de Vries J, Sieuwerts AM, Portengen H, Meijer-Van Gelder ME, Piepenbrock C, Olek A, Hofler H, Kiechle M, Klijn JG, Schmitt M, Maier S, Foekens JA (2005) Association of DNA methylation of phosphoserine aminotransferase with response to endocrine therapy in patients with recurrent breast cancer. Cancer Res 65(10):4101–4117. doi: 10.1158/0008-5472.can-05-0064 PubMedGoogle Scholar
  38. 38.
    Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lønning PE, Børresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752. doi: 10.1038/35021093 PubMedGoogle Scholar
  39. 39.
    Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Lonning PE, Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98(19):10869–10874. doi: 10.1073/pnas.191367098 PubMedCentralPubMedGoogle Scholar
  40. 40.
    Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, Karaca G, Troester MA, Tse CK, Edmiston S, Deming SL, Geradts J, Cheang MC, Nielsen TO, Moorman PG, Earp HS, Millikan RC (2006) Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295(21):2492–2502. doi: 10.1001/jama.295.21.2492 PubMedGoogle Scholar
  41. 41.
    Potemski P, Kusinska R, Watala C, Pluciennik E, Bednarek AK, Kordek R (2005) Prognostic relevance of basal cytokeratin expression in operable breast cancer. Oncology 69(6):478–485. doi: 10.1159/000090986 PubMedGoogle Scholar
  42. 42.
    Holm K, Hegardt C, Staaf J, Vallon-Christersson J, Jonsson G, Olsson H, Borg A, Ringner M (2010) Molecular subtypes of breast cancer are associated with characteristic DNA methylation patterns. Breast Cancer Res 12(3):R36. doi: 10.1186/bcr2590 PubMedCentralPubMedGoogle Scholar
  43. 43.
    Bardowell SA, Parker J, Fan C, Crandell J, Perou CM, Swift-Scanlan T (2013) Differential methylation relative to breast cancer subtype and matched normal tissue reveals distinct patterns. Breast Cancer Res Treat 142(2):365–380. doi: 10.1007/s10549-013-2738-0 PubMedCentralPubMedGoogle Scholar
  44. 44.
    Milani A, Montemurro F, Gioeni L, Aglietta M, Valabrega G (2010) Role of trastuzumab in the management of HER2-positive metastatic breast cancer. Breast Cancer (Dove Med Press) 2:93–109. doi: 10.2147/bctt.s6070 Google Scholar
  45. 45.
    Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, Slamon DJ, Murphy M, Novotny WF, Burchmore M, Shak S, Stewart SJ, Press M (2002) Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 20(3):719–726PubMedGoogle Scholar
  46. 46.
    Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, Norton L (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344(11):783–792. doi: 10.1056/nejm200103153441101 PubMedGoogle Scholar
  47. 47.
    Hynes NE, Lane HA (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5(5):341–354. doi: 10.1038/nrc1609 PubMedGoogle Scholar
  48. 48.
    Branham MT, Marzese DM, Laurito SR, Gago FE, Orozco JI, Tello OM, Vargas-Roig LM, Roque M (2012) Methylation profile of triple-negative breast carcinomas. Oncogenesis 1:e17. doi: 10.1038/oncsis.2012.17 PubMedCentralPubMedGoogle Scholar
  49. 49.
    Birgisdottir V, Stefansson OA, Bodvarsdottir SK, Hilmarsdottir H, Jonasson JG, Eyfjord JE (2006) Epigenetic silencing and deletion of the BRCA1 gene in sporadic breast cancer. Breast Cancer Res 8(4):R38. doi: 10.1186/bcr1522 PubMedCentralPubMedGoogle Scholar
  50. 50.
    Mancini DN, Rodenhiser DI, Ainsworth PJ, O’Malley FP, Singh SM, Xing W, Archer TK (1998) CpG methylation within the 5' regulatory region of the BRCA1 gene is tumor specific and includes a putative CREB binding site. Oncogene 16(9):1161–1169. doi: 10.1038/sj.onc.1201630 PubMedGoogle Scholar
  51. 51.
    Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. N Engl J Med 363(20):1938–1948. doi: 10.1056/NEJMra1001389 PubMedGoogle Scholar
  52. 52.
    Turner NC, Reis-Filho JS, Russell AM, Springall RJ, Ryder K, Steele D, Savage K, Gillett CE, Schmitt FC, Ashworth A, Tutt AN (2007) BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene 26(14):2126–2132. doi: 10.1038/sj.onc.1210014 PubMedGoogle Scholar
  53. 53.
    Stefansson OA, Jonasson JG, Olafsdottir K, Hilmarsdottir H, Olafsdottir G, Esteller M, Johannsson OT, Eyfjord JE (2011) CpG island hypermethylation of BRCA1 and loss of pRb as co-occurring events in basal/triple-negative breast cancer. Epigenetics 6(5):638–649. doi: 10.4161/epi.6.5.15667 PubMedCentralPubMedGoogle Scholar
  54. 54.
    Hsu NC, Huang YF, Yokoyama KK, Chu PY, Chen FM, Hou MF (2013) Methylation of BRCA1 promoter region is associated with unfavorable prognosis in women with early-stage breast cancer. PLoS One 8(2):e56256. doi: 10.1371/journal.pone.0056256 PubMedCentralPubMedGoogle Scholar
  55. 55.
    Khan S, Kumagai T, Vora J, Bose N, Sehgal I, Koeffler PH, Bose S (2004) PTEN promoter is methylated in a proportion of invasive breast cancers. Int J Cancer 112(3):407–410. doi: 10.1002/ijc.20447 PubMedGoogle Scholar
  56. 56.
    Garcia JM, Silva J, Pena C, Garcia V, Rodriguez R, Cruz MA, Cantos B, Provencio M, Espana P, Bonilla F (2004) Promoter methylation of the PTEN gene is a common molecular change in breast cancer. Genes Chromosomes Cancer 41(2):117–124. doi: 10.1002/gcc.20062 PubMedGoogle Scholar
  57. 57.
    Muggerud AA, Ronneberg JA, Warnberg F, Botling J, Busato F, Jovanovic J, Solvang H, Bukholm I, Borresen-Dale AL, Kristensen VN, Sorlie T, Tost J (2010) Frequent aberrant DNA methylation of ABCB1, FOXC1, PPP2R2B and PTEN in ductal carcinoma in situ and early invasive breast cancer. Breast Cancer Res 12(1):R3. doi: 10.1186/bcr2466 PubMedCentralPubMedGoogle Scholar
  58. 58.
    Lu Y, Lin YZ, LaPushin R, Cuevas B, Fang X, Yu SX, Davies MA, Khan H, Furui T, Mao M, Zinner R, Hung MC, Steck P, Siminovitch K, Mills GB (1999) The PTEN/MMAC1/TEP tumor suppressor gene decreases cell growth and induces apoptosis and anoikis in breast cancer cells. Oncogene 18(50):7034–7045. doi: 10.1038/sj.onc.1203183 PubMedGoogle Scholar
  59. 59.
    Chlebowski RT, Chen Z, Anderson GL, Rohan T, Aragaki A, Lane D, Dolan NC, Paskett ED, McTiernan A, Hubbell FA, Adams-Campbell LL, Prentice R (2005) Ethnicity and breast cancer: factors influencing differences in incidence and outcome. J Natl Cancer Inst 97(6):439–448. doi: 10.1093/jnci/dji064 PubMedGoogle Scholar
  60. 60.
    Amirikia KC, Mills P, Bush J, Newman LA (2011) Higher population-based incidence rates of triple-negative breast cancer among young African-American women: Implications for breast cancer screening recommendations. Cancer 117(12):2747–2753. doi: 10.1002/cncr.25862 PubMedCentralPubMedGoogle Scholar
  61. 61.
    Stead LA, Lash TL, Sobieraj JE, Chi DD, Westrup JL, Charlot M, Blanchard RA, Lee JC, King TC, Rosenberg CL (2009) Triple-negative breast cancers are increased in black women regardless of age or body mass index. Breast Cancer Res 11(2):R18. doi: 10.1186/bcr2242 PubMedCentralPubMedGoogle Scholar
  62. 62.
    Lund MJ, Butler EN, Hair BY, Ward KC, Andrews JH, Oprea-Ilies G, Bayakly AR, O’Regan RM, Vertino PM, Eley JW (2010) Age/race differences in HER2 testing and in incidence rates for breast cancer triple subtypes: a population-based study and first report. Cancer 116(11):2549–2559. doi: 10.1002/cncr.25016 PubMedGoogle Scholar
  63. 63.
    Network NCC NCCN Clinical Practice Guidelines in Oncology - BREAST CANCER. http://www.nccn.org. Accessed 01 May 2013
  64. 64.
    Mehrotra J, Ganpat MM, Kanaan Y, Fackler MJ, McVeigh M, Lahti-Domenici J, Polyak K, Argani P, Naab T, Garrett E, Parmigiani G, Broome C, Sukumar S (2004) Estrogen receptor/progesterone receptor-negative breast cancers of young African-American women have a higher frequency of methylation of multiple genes than those of Caucasian women. Clin Cancer Res 10(6):2052–2057PubMedGoogle Scholar
  65. 65.
    Dumitrescu RG (2012) Epigenetic markers of early tumor development. Methods Mol Biol 863:3–14. doi: 10.1007/978-1-61779-612-8_1 PubMedGoogle Scholar
  66. 66.
    Huang S (2002) Histone methyltransferases, diet nutrients and tumour suppressors. Nat Rev Cancer 2(6):469–476. doi: 10.1038/nrc819 PubMedGoogle Scholar
  67. 67.
    Juttermann R, Li E, Jaenisch R (1994) Toxicity of 5-aza-2'-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc Natl Acad Sci U S A 91(25):11797–11801PubMedCentralPubMedGoogle Scholar
  68. 68.
    Bhalla KN (2005) Epigenetic and chromatin modifiers as targeted therapy of hematologic malignancies. J Clin Oncol 23(17):3971–3993. doi: 10.1200/jco.2005.16.600 PubMedGoogle Scholar
  69. 69.
    Jabbour E, Issa JP, Garcia-Manero G, Kantarjian H (2008) Evolution of decitabine development: accomplishments, ongoing investigations, and future strategies. Cancer 112(11):2341–2351. doi: 10.1002/cncr.23463 PubMedGoogle Scholar
  70. 70.
    Fan J, Yin WJ, Lu JS, Wang L, Wu J, Wu FY, Di GH, Shen ZZ, Shao ZM (2008) ER alpha negative breast cancer cells restore response to endocrine therapy by combination treatment with both HDAC inhibitor and DNMT inhibitor. J Cancer Res Clin Oncol 134(8):883–890. doi: 10.1007/s00432-008-0354-x PubMedGoogle Scholar
  71. 71.
    Baylin SB, Jones PA (2011) A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer 11(10):726–734. doi: 10.1038/nrc3130 PubMedCentralPubMedGoogle Scholar
  72. 72.
    Perry AS, Watson RW, Lawler M, Hollywood D (2010) The epigenome as a therapeutic target in prostate cancer. Nat Rev Urol 7(12):668–680. doi: 10.1038/nrurol.2010.185 PubMedGoogle Scholar
  73. 73.
    Dobosy JR, Roberts JL, Fu VX, Jarrard DF (2007) The expanding role of epigenetics in the development, diagnosis and treatment of prostate cancer and benign prostatic hyperplasia. J Urol 177(3):822–831. doi: 10.1016/j.juro.2006.10.063 PubMedGoogle Scholar
  74. 74.
    Seligson DB, Horvath S, Shi T, Yu H, Tze S, Grunstein M, Kurdistani SK (2005) Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435(7046):1262–1266. doi: 10.1038/nature03672 PubMedGoogle Scholar
  75. 75.
    Yu J, Cao Q, Mehra R, Laxman B, Yu J, Tomlins SA, Creighton CJ, Dhanasekaran SM, Shen R, Chen G, Morris DS, Marquez VE, Shah RB, Ghosh D, Varambally S, Chinnaiyan AM (2007) Integrative genomics analysis reveals silencing of beta-adrenergic signaling by polycomb in prostate cancer. Cancer Cell 12(5):419–431. doi: 10.1016/j.ccr.2007.10.016 PubMedGoogle Scholar
  76. 76.
    Yegnasubramanian S, Kowalski J, Gonzalgo ML, Zahurak M, Piantadosi S, Walsh PC, Bova GS, De Marzo AM, Isaacs WB, Nelson WG (2004) Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res 64(6):1975–1986PubMedGoogle Scholar
  77. 77.
    Vanaja DK, Ehrich M, Van den Boom D, Cheville JC, Karnes RJ, Tindall DJ, Cantor CR, Young CY (2009) Hypermethylation of genes for diagnosis and risk stratification of prostate cancer. Cancer Invest 27(5):549–560. doi: 10.1080/07357900802620794 PubMedCentralPubMedGoogle Scholar
  78. 78.
    Mahapatra S, Klee EW, Young CY, Sun Z, Jimenez RE, Klee GG, Tindall DJ, Donkena KV (2012) Global methylation profiling for risk prediction of prostate cancer. Clin Cancer Res 18(10):2882–2895. doi: 10.1158/1078-0432.ccr-11-2090 PubMedGoogle Scholar
  79. 79.
    Lin PC, Giannopoulou EG, Park K, Mosquera JM, Sboner A, Tewari AK, Garraway LA, Beltran H, Rubin MA, Elemento O (2013) Epigenomic alterations in localized and advanced prostate cancer. Neoplasia 15(4):373–383PubMedCentralPubMedGoogle Scholar
  80. 80.
    Li LC, Carroll PR, Dahiya R (2005) Epigenetic changes in prostate cancer: implication for diagnosis and treatment. J Natl Cancer Inst 97(2):103–115. doi: 10.1093/jnci/dji010 PubMedGoogle Scholar
  81. 81.
    Kazantsev AG, Thompson LM (2008) Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov 7(10):854–868. doi: 10.1038/nrd2681 PubMedGoogle Scholar
  82. 82.
    Korkmaz CG, Fronsdal K, Zhang Y, Lorenzo PI, Saatcioglu F (2004) Potentiation of androgen receptor transcriptional activity by inhibition of histone deacetylation–rescue of transcriptionally compromised mutants. J Endocrinol 182(3):377–389PubMedGoogle Scholar
  83. 83.
    Woodson K, Hayes R, Wideroff L, Villaruz L, Tangrea J (2003) Hypermethylation of GSTP1, CD44, and E-cadherin genes in prostate cancer among US Blacks and Whites. Prostate 55(3):199–205. doi: 10.1002/pros.10236 PubMedGoogle Scholar
  84. 84.
    Enokida H, Shiina H, Urakami S, Igawa M, Ogishima T, Pookot D, Li LC, Tabatabai ZL, Kawahara M, Nakagawa M, Kane CJ, Carroll PR, Dahiya R (2005) Ethnic group-related differences in CpG hypermethylation of the GSTP1 gene promoter among African-American, Caucasian and Asian patients with prostate cancer. Int J Cancer 116(2):174–181. doi: 10.1002/ijc.21017 PubMedGoogle Scholar
  85. 85.
    Kwabi-Addo B, Wang S, Chung W, Jelinek J, Patierno SR, Wang BD, Andrawis R, Lee NH, Apprey V, Issa JP, Ittmann M (2010) Identification of differentially methylated genes in normal prostate tissues from African American and Caucasian men. Clin Cancer Res 16(14):3539–3547. doi: 10.1158/1078-0432.ccr-09-3342 PubMedGoogle Scholar
  86. 86.
    Xiong Z, Laird PW (1997) COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res 25(12):2532–2534PubMedCentralPubMedGoogle Scholar
  87. 87.
    Yegnasubramanian S, Lin X, Haffner MC, DeMarzo AM, Nelson WG (2006) Combination of methylated-DNA precipitation and methylation-sensitive restriction enzymes (COMPARE-MS) for the rapid, sensitive and quantitative detection of DNA methylation. Nucleic Acids Res 34(3):e19. doi: 10.1093/nar/gnj022 PubMedCentralPubMedGoogle Scholar
  88. 88.
    Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89(5):1827–1831PubMedCentralPubMedGoogle Scholar
  89. 89.
    Laird PW (2003) The power and the promise of DNA methylation markers. Nat Rev Cancer 3(4):253–266. doi: 10.1038/nrc1045 PubMedGoogle Scholar
  90. 90.
    Zhang Y, Bailey V, Puleo CM, Easwaran H, Griffiths E, Herman JG, Baylin SB, Wang TH (2009) DNA methylation analysis on a droplet-in-oil PCR array. Lab Chip 9(8):1059–1064. doi: 10.1039/b821780g PubMedCentralPubMedGoogle Scholar
  91. 91.
    Yang AS, Estecio MR, Doshi K, Kondo Y, Tajara EH, Issa JP (2004) A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 32(3):e38. doi: 10.1093/nar/gnh032 PubMedCentralPubMedGoogle Scholar
  92. 92.
    Lisanti S, Omar WA, Tomaszewski B, De Prins S, Jacobs G, Koppen G, Mathers JC, Langie SA (2013) Comparison of methods for quantification of global DNA methylation in human cells and tissues. PLoS One 8(11):e79044. doi: 10.1371/journal.pone.0079044 PubMedCentralPubMedGoogle Scholar
  93. 93.
    Mikol YB, Hoover KL, Creasia D, Poirier LA (1983) Hepatocarcinogenesis in rats fed methyl-deficient, amino acid-defined diets. Carcinogenesis 4(12):1619–1629PubMedGoogle Scholar
  94. 94.
    Uriarte G, Paternain L, Milagro FI, Martinez JA, Campion J (2013) Shifting to a control diet after a high-fat, high-sucrose diet intake induces epigenetic changes in retroperitoneal adipocytes of Wistar rats. J Physiol Biochem 69(3):601–611. doi: 10.1007/s13105-012-0231-6 PubMedGoogle Scholar
  95. 95.
    Milagro FI, Campion J, Garcia-Diaz DF, Goyenechea E, Paternain L, Martinez JA (2009) High fat diet-induced obesity modifies the methylation pattern of leptin promoter in rats. J Physiol Biochem 65(1):1–9PubMedGoogle Scholar
  96. 96.
    Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ (2003) Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 348(17):1625–1638. doi: 10.1056/NEJMoa021423 PubMedGoogle Scholar
  97. 97.
    Shankar S, Kumar D, Srivastava RK (2013) Epigenetic modifications by dietary phytochemicals: implications for personalized nutrition. Pharmacol Ther 138(1):1–17. doi: 10.1016/j.pharmthera.2012.11.002 PubMedCentralPubMedGoogle Scholar
  98. 98.
    Wang P, Vadgama JV, Said JW, Magyar CE, Doan N, Heber D, Henning SM (2014) Enhanced inhibition of prostate cancer xenograft tumor growth by combining quercetin and green tea. J Nutr Biochem 25(1):73–80. doi: 10.1016/j.jnutbio.2013.09.005 PubMedGoogle Scholar
  99. 99.
    Thakur VS, Gupta K, Gupta S (2012) The chemopreventive and chemotherapeutic potentials of tea polyphenols. Curr Pharm Biotechnol 13(1):191–199PubMedCentralPubMedGoogle Scholar
  100. 100.
    Fang MZ, Wang Y, Ai N, Hou Z, Sun Y, Lu H, Welsh W, Yang CS (2003) Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res 63(22):7563–7570PubMedGoogle Scholar
  101. 101.
    Choi KC, Jung MG, Lee YH, Yoon JC, Kwon SH, Kang HB, Kim MJ, Cha JH, Kim YJ, Jun WJ, Lee JM, Yoon HG (2009) Epigallocatechin-3-gallate, a histone acetyltransferase inhibitor, inhibits EBV-induced B lymphocyte transformation via suppression of RelA acetylation. Cancer Res 69(2):583–592. doi: 10.1158/0008-5472.can-08-2442 PubMedGoogle Scholar
  102. 102.
    Li Y, Yuan YY, Meeran SM, Tollefsbol TO (2010) Synergistic epigenetic reactivation of estrogen receptor-alpha (ERalpha) by combined green tea polyphenol and histone deacetylase inhibitor in ERalpha-negative breast cancer cells. Mol Cancer 9:274. doi: 10.1186/1476-4598-9-274 PubMedCentralPubMedGoogle Scholar
  103. 103.
    Medina-Franco JL, Lopez-Vallejo F, Kuck D, Lyko F (2011) Natural products as DNA methyltransferase inhibitors: a computer-aided discovery approach. Mol Divers 15(2):293–304. doi: 10.1007/s11030-010-9262-5 PubMedGoogle Scholar
  104. 104.
    Vadgama JV, Wu Y, Shen D, Hsia S, Block J (2000) Effect of selenium in combination with Adriamycin or Taxol on several different cancer cells. Anticancer Res 20(3a):1391–1414PubMedGoogle Scholar
  105. 105.
    Xiang N, Zhao R, Song G, Zhong W (2008) Selenite reactivates silenced genes by modifying DNA methylation and histones in prostate cancer cells. Carcinogenesis 29(11):2175–2181. doi: 10.1093/carcin/bgn179 PubMedCentralPubMedGoogle Scholar
  106. 106.
    Davis CD, Uthus EO (2003) Dietary folate and selenium affect dimethylhydrazine-induced aberrant crypt formation, global DNA methylation and one-carbon metabolism in rats. J Nutr 133(9):2907–2914PubMedGoogle Scholar
  107. 107.
    Majid S, Dar AA, Ahmad AE, Hirata H, Kawakami K, Shahryari V, Saini S, Tanaka Y, Dahiya AV, Khatri G, Dahiya R (2009) BTG3 tumor suppressor gene promoter demethylation, histone modification and cell cycle arrest by genistein in renal cancer. Carcinogenesis 30(4):662–670. doi: 10.1093/carcin/bgp042 PubMedCentralPubMedGoogle Scholar
  108. 108.
    King-Batoon A, Leszczynska JM, Klein CB (2008) Modulation of gene methylation by genistein or lycopene in breast cancer cells. Environ Mol Mutagen 49(1):36–45. doi: 10.1002/em.20363 PubMedGoogle Scholar
  109. 109.
    Fang MZ, Chen D, Sun Y, Jin Z, Christman JK, Yang CS (2005) Reversal of hypermethylation and reactivation of p16INK4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy. Clin Cancer Res 11(19 Pt 1):7033–7041. doi: 10.1158/1078-0432.ccr-05-0406 PubMedGoogle Scholar
  110. 110.
    Kikuno N, Shiina H, Urakami S, Kawamoto K, Hirata H, Tanaka Y, Majid S, Igawa M, Dahiya R (2008) Genistein mediated histone acetylation and demethylation activates tumor suppressor genes in prostate cancer cells. Int J Cancer 123(3):552–560. doi: 10.1002/ijc.23590 PubMedGoogle Scholar
  111. 111.
    Srivastava RK, Unterman TG, Shankar S (2010) FOXO transcription factors and VEGF neutralizing antibody enhance antiangiogenic effects of resveratrol. Mol Cell Biochem 337(1–2):201–212. doi: 10.1007/s11010-009-0300-5 PubMedCentralPubMedGoogle Scholar
  112. 112.
    Wang RH, Zheng Y, Kim HS, Xu X, Cao L, Luhasen T, Lee MH, Xiao C, Vassilopoulos A, Chen W, Gardner K, Man YG, Hung MC, Finkel T, Deng CX (2008) Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis. Mol Cell 32(1):11–20. doi: 10.1016/j.molcel.2008.09.011 PubMedCentralPubMedGoogle Scholar
  113. 113.
    Gaudet MM, Campan M, Figueroa JD, Yang XR, Lissowska J, Peplonska B, Brinton LA, Rimm DL, Laird PW, Garcia-Closas M, Sherman ME (2009) DNA hypermethylation of ESR1 and PGR in breast cancer: pathologic and epidemiologic associations. Cancer Epidemiol Biomarkers Prev 18(11):3036–3043. doi: 10.1158/1055-9965.epi-09-0678 PubMedCentralPubMedGoogle Scholar
  114. 114.
    Rosenbaum E, Hoque MO, Cohen Y, Zahurak M, Eisenberger MA, Epstein JI, Partin AW, Sidransky D (2005) Promoter hypermethylation as an independent prognostic factor for relapse in patients with prostate cancer following radical prostatectomy. Clin Cancer Res 11(23):8321–8325. doi: 10.1158/1078-0432.ccr-05-1183 PubMedGoogle Scholar
  115. 115.
    Cairns P, Esteller M, Herman JG, Schoenberg M, Jeronimo C, Sanchez-Cespedes M, Chow NH, Grasso M, Wu L, Westra WB, Sidransky D (2001) Molecular detection of prostate cancer in urine by GSTP1 hypermethylation. Clin Cancer Res 7(9):2727–2730PubMedGoogle Scholar
  116. 116.
    Hojfeldt JW, Agger K, Helin K (2013) Histone lysine demethylases as targets for anticancer therapy. Nat Rev Drug Discov 12(12):917–930. doi: 10.1038/nrd4154 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yanyuan Wu
    • 1
    • 2
  • Marianna Sarkissyan
    • 1
  • Jaydutt V. Vadgama
    • 1
    • 2
  1. 1.Division of Cancer Research and Training, Department of Internal Medicine, Center to Eliminate Cancer Health DisparitiesCharles R. Drew University of Medicine and ScienceLos AngelesUSA
  2. 2.Jonsson Comprehensive Cancer CenterUniversity of California at Los AngelesLos AngelesUSA

Personalised recommendations