Epigenetics of Urothelial Carcinoma

  • Wolfgang A. SchulzEmail author
  • Evangelia A. Koutsogiannouli
  • Günter Niegisch
  • Michèle J. Hoffmann
Part of the Methods in Molecular Biology book series (MIMB, volume 1238)


Urothelial carcinoma is the most frequent type of bladder cancer. Improvements in diagnostics and therapy of this common tumor are urgently required and need to be based on a better understanding of its biology. Epigenetic aberrations are crucial to urothelial carcinoma development and progression. They affect DNA methylation, histone modifications, chromatin remodeling, long noncoding RNAs, and microRNAs. Compared to other cancers, DNA hypomethylation, especially at LINE-1 retrotransposons, and mutations in enzymes establishing or removing histone acetylation or methylation are particularly prominent. Accumulating evidence suggests that disturbances in DNA methylation, histone modifications and noncoding RNAs may contribute especially to altered differentiation and metastatic potential. With proper selection, histone-modifying enzymes may constitute good targets for therapy. For diagnostics, DNA methylation and miRNA biomarkers are well suited because of their relatively high stability. There are indeed excellent biomarker candidates for DNA-methylation-based diagnostics of urothelial carcinoma, whereas miRNAs are well investigated, but there are still many discrepancies between studies published to date.

Key words

Biomarker Diagnosis Epigenetics Methylation Urothelial carcinoma 



Our studies on epigenetic in urothelial carcinoma are supported by a fellowship of the Bodossaki foundation to E.A.K. a young investigator grant of the research commission of the Medical Faculty of the Heinrich Heine University to M.J.H and a grant of the Deutsche Forschungsgemeinschaft to G.N.


  1. 1.
    Kaufman DS, Shipley WU, Feldman AS (2009) Bladder cancer. Lancet 374(9685):239–249PubMedGoogle Scholar
  2. 2.
    Di Pierro GB et al (2012) Bladder cancer: a simple model becomes complex. Curr Genomics 13(5):395–415PubMedCentralPubMedGoogle Scholar
  3. 3.
    Goebell PJ, Knowles MA (2010) Bladder cancer or bladder cancers? Genetically distinct malignant conditions of the urothelium. Urol Oncol 28(4):409–428PubMedGoogle Scholar
  4. 4.
    Han H, Wolff EM, Liang G (2012) Epigenetic alterations in bladder cancer and their potential clinical implications. Adv Urol 2012:546917PubMedCentralPubMedGoogle Scholar
  5. 5.
    Reinert T (2012) Methylation markers for urine-based detection of bladder cancer: the next generation of urinary markers for diagnosis and surveillance of bladder cancer. Adv Urol 2012:503271PubMedCentralPubMedGoogle Scholar
  6. 6.
    Sanchez-Carbayo M (2012) Hypermethylation in bladder cancer: biological pathways and translational applications. Tumour Biol 33(2):347–361PubMedGoogle Scholar
  7. 7.
    Besaratinia A, Cockburn M, Tommasi S (2013) Alterations of DNA methylome in human bladder cancer. Epigenetics 8(10):1013–1022PubMedCentralPubMedGoogle Scholar
  8. 8.
    Koutsogiannouli E, Papavassiliou AG, Papanikolaou NA (2013) Complexity in cancer biology: is systems biology the answer? Cancer Med 2(2):164–177PubMedCentralPubMedGoogle Scholar
  9. 9.
    Dudziec E, Goepel JR, Catto JW (2011) Global epigenetic profiling in bladder cancer. Epigenomics 3(1):35–45PubMedGoogle Scholar
  10. 10.
    Heichman KA, Warren JD (2012) DNA methylation biomarkers and their utility for solid cancer diagnostics. Clin Chem Lab Med 50(10):1707–1721PubMedGoogle Scholar
  11. 11.
    Chung W et al (2011) Detection of bladder cancer using novel DNA methylation biomarkers in urine sediments. Cancer Epidemiol Biomarkers Prev 20(7):1483–1491PubMedCentralPubMedGoogle Scholar
  12. 12.
    Phe V, Cussenot O, Roupret M (2009) Interest of methylated genes as biomarkers in urothelial cell carcinomas of the urinary tract. BJU Int 104(7):896–901PubMedGoogle Scholar
  13. 13.
    Lin HH et al (2010) Increase sensitivity in detecting superficial, low grade bladder cancer by combination analysis of hypermethylation of E-cadherin, p16, p14, RASSF1A genes in urine. Urol Oncol 28(6):597–602PubMedGoogle Scholar
  14. 14.
    Hoque MO et al (2006) Quantitation of promoter methylation of multiple genes in urine DNA and bladder cancer detection. J Natl Cancer Inst 98(14):996–1004PubMedGoogle Scholar
  15. 15.
    Vinci S et al (2011) Quantitative methylation analysis of BCL2, hTERT, and DAPK promoters in urine sediment for the detection of non-muscle-invasive urothelial carcinoma of the bladder: a prospective, two-center validation study. Urol Oncol 29(2):150–156PubMedGoogle Scholar
  16. 16.
    Yates DR et al (2007) Promoter hypermethylation identifies progression risk in bladder cancer. Clin Cancer Res 13(7):2046–2053PubMedGoogle Scholar
  17. 17.
    Nishiyama N et al (2011) Copy number alterations in urothelial carcinomas: their clinicopathological significance and correlation with DNA methylation alterations. Carcinogenesis 32(4):462–469PubMedCentralPubMedGoogle Scholar
  18. 18.
    Lauss M et al (2012) DNA methylation analyses of urothelial carcinoma reveal distinct epigenetic subtypes and an association between gene copy number and methylation status. Epigenetics 7(8):858–867PubMedCentralPubMedGoogle Scholar
  19. 19.
    Coolen MW et al (2010) Consolidation of the cancer genome into domains of repressive chromatin by long-range epigenetic silencing (LRES) reduces transcriptional plasticity. Nat Cell Biol 12(3):235–246PubMedCentralPubMedGoogle Scholar
  20. 20.
    Vallot C et al (2011) A novel epigenetic phenotype associated with the most aggressive pathway of bladder tumor progression. J Natl Cancer Inst 103(1):47–60PubMedCentralPubMedGoogle Scholar
  21. 21.
    Irizarry RA, Wu H, Feinberg AP (2009) A species-generalized probabilistic model-based definition of CpG islands. Mamm Genome 20(9–10):674–680PubMedCentralPubMedGoogle Scholar
  22. 22.
    Costa VL et al (2010) Three epigenetic biomarkers, GDF15, TMEFF2, and VIM, accurately predict bladder cancer from DNA-based analyses of urine samples. Clin Cancer Res 16(23):5842–5851PubMedGoogle Scholar
  23. 23.
    Wolff EM et al (2010) Unique DNA methylation patterns distinguish noninvasive and invasive urothelial cancers and establish an epigenetic field defect in premalignant tissue. Cancer Res 70(20):8169–8178PubMedCentralPubMedGoogle Scholar
  24. 24.
    Dudziec E et al (2011) Hypermethylation of CpG islands and shores around specific microRNAs and mirtrons is associated with the phenotype and presence of bladder cancer. Clin Cancer Res 17(6):1287–1296PubMedGoogle Scholar
  25. 25.
    Marsit CJ et al (2011) DNA methylation array analysis identifies profiles of blood-derived DNA methylation associated with bladder cancer. J Clin Oncol 29(9):1133–1139PubMedCentralPubMedGoogle Scholar
  26. 26.
    Reinert T et al (2011) Comprehensive genome methylation analysis in bladder cancer: identification and validation of novel methylated genes and application of these as urinary tumor markers. Clin Cancer Res 17(17):5582–5592PubMedGoogle Scholar
  27. 27.
    Kandimalla R et al (2012) Genome-wide analysis of CpG island methylation in bladder cancer identified TBX2, TBX3, GATA2, and ZIC4 as pTa-specific prognostic markers. Eur Urol 61(6):1245–1256PubMedGoogle Scholar
  28. 28.
    Dudziec E et al (2012) Integrated epigenome profiling of repressive histone modifications, DNA methylation and gene expression in normal and malignant urothelial cells. PLoS One 7(3):e32750PubMedCentralPubMedGoogle Scholar
  29. 29.
    Kim YJ et al (2013) HOXA9, ISL1 and ALDH1A3 methylation patterns as prognostic markers for nonmuscle invasive bladder cancer: array-based DNA methylation and expression profiling. Int J Cancer 133(5):1135–1142PubMedGoogle Scholar
  30. 30.
    Chihara Y et al (2013) Diagnostic markers of urothelial cancer based on DNA methylation analysis. BMC Cancer 13:275PubMedCentralPubMedGoogle Scholar
  31. 31.
    Marsit CJ et al (2010) Identification of methylated genes associated with aggressive bladder cancer. PLoS One 5(8):e12334PubMedCentralPubMedGoogle Scholar
  32. 32.
    Koestler DC et al (2010) Semi-supervised recursively partitioned mixture models for identifying cancer subtypes. Bioinformatics 26(20):2578–2585PubMedCentralPubMedGoogle Scholar
  33. 33.
    Serizawa RR et al (2011) Integrated genetic and epigenetic analysis of bladder cancer reveals an additive diagnostic value of FGFR3 mutations and hypermethylation events. Int J Cancer 129(1):78–87PubMedGoogle Scholar
  34. 34.
    Easwaran H et al (2012) A DNA hypermethylation module for the stem/progenitor cell signature of cancer. Genome Res 22(5):837–849PubMedCentralPubMedGoogle Scholar
  35. 35.
    Dokun OY et al (2008) Relationship of SNCG, S100A4, S100A9 and LCN2 gene expression and DNA methylation in bladder cancer. Int J Cancer 123(12):2798–2807PubMedGoogle Scholar
  36. 36.
    Hoffmann MJ, Schulz WA (2005) Causes and consequences of DNA hypomethylation in human cancer. Biochem Cell Biol 83(3):296–321PubMedGoogle Scholar
  37. 37.
    Xu Y et al (2012) Unique DNA methylome profiles in CpG island methylator phenotype colon cancers. Genome Res 22(2):283–291PubMedCentralPubMedGoogle Scholar
  38. 38.
    Wilson AS, Power BE, Molloy PL (2007) DNA hypomethylation and human diseases. Biochim Biophys Acta 1775(1):138–162PubMedGoogle Scholar
  39. 39.
    Kimura F et al (2001) Polymorphic methyl group metabolism genes in patients with transitional cell carcinoma of the urinary bladder. Mutat Res 458(1–2):49–54PubMedGoogle Scholar
  40. 40.
    Nakagawa T et al (2005) DNA hypomethylation on pericentromeric satellite regions significantly correlates with loss of heterozygosity on chromosome 9 in urothelial carcinomas. J Urol 173(1):243–246PubMedGoogle Scholar
  41. 41.
    Kimura F et al (2001) Destabilization of chromosome 9 in transitional cell carcinoma of the urinary bladder. Br J Cancer 85(12):1887–1893PubMedCentralPubMedGoogle Scholar
  42. 42.
    Schulz WA (2006) L1 retrotransposons in human cancers. J Biomed Biotechnol 2006(1):83672PubMedCentralPubMedGoogle Scholar
  43. 43.
    Goodier JL, Kazazian HH Jr (2008) Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell 135(1):23–35PubMedGoogle Scholar
  44. 44.
    Florl AR et al (1999) DNA methylation and expression of LINE-1 and HERV-K provirus sequences in urothelial and renal cell carcinomas. Br J Cancer 80(9):1312–1321PubMedCentralPubMedGoogle Scholar
  45. 45.
    Neuhausen A et al (2006) DNA methylation alterations in urothelial carcinoma. Cancer Biol Ther 5(8):993–1001PubMedGoogle Scholar
  46. 46.
    Kreimer U et al (2013) HERV-K and LINE-1 DNA methylation and reexpression in urothelial carcinoma. Front Oncol 3:255PubMedCentralPubMedGoogle Scholar
  47. 47.
    Lee E et al (2012) Landscape of somatic retrotransposition in human cancers. Science 337(6097):967–971PubMedCentralPubMedGoogle Scholar
  48. 48.
    Iskow RC et al (2010) Natural mutagenesis of human genomes by endogenous retrotransposons. Cell 141(7):1253–1261PubMedCentralPubMedGoogle Scholar
  49. 49.
    Burns MB, Temiz NA, Harris RS (2013) Evidence for APOBEC3B mutagenesis in multiple human cancers. Nat Genet 45(9):977–983PubMedCentralPubMedGoogle Scholar
  50. 50.
    Roberts SA et al (2013) An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat Genet 45(9):970–976PubMedCentralPubMedGoogle Scholar
  51. 51.
    Wolff EM et al (2010) Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer. PLoS Genet 6(4):e1000917PubMedCentralPubMedGoogle Scholar
  52. 52.
    van Bemmel D et al (2012) Correlation of LINE-1 methylation levels in patient-matched buffy coat, serum, buccal cell, and bladder tumor tissue DNA samples. Cancer Epidemiol Biomarkers Prev 21(7):1143–1148PubMedCentralPubMedGoogle Scholar
  53. 53.
    Moore LE et al (2008) Genomic DNA hypomethylation as a biomarker for bladder cancer susceptibility in the Spanish Bladder Cancer Study: a case-control study. Lancet Oncol 9(4):359–366PubMedCentralPubMedGoogle Scholar
  54. 54.
    Brennan K, Flanagan JM (2012) Is there a link between genome-wide hypomethylation in blood and cancer risk? Cancer Prev Res (Phila) 5(12):1345–1357Google Scholar
  55. 55.
    Woo HD, Kim J (2012) Global DNA hypomethylation in peripheral blood leukocytes as a biomarker for cancer risk: a meta-analysis. PLoS One 7(4):e34615PubMedCentralPubMedGoogle Scholar
  56. 56.
    Hinz S et al (2008) Expression of the polycomb group protein EZH2 and its relation to outcome in patients with urothelial carcinoma of the bladder. J Cancer Res Clin Oncol 134(3):331–336PubMedGoogle Scholar
  57. 57.
    Wang H et al (2012) Increased EZH2 protein expression is associated with invasive urothelial carcinoma of the bladder. Urol Oncol 30(4):428–433PubMedGoogle Scholar
  58. 58.
    Weikert S et al (2005) Expression levels of the EZH2 polycomb transcriptional repressor correlate with aggressiveness and invasive potential of bladder carcinomas. Int J Mol Med 16(2):349–353PubMedGoogle Scholar
  59. 59.
    Raman JD et al (2005) Increased expression of the polycomb group gene, EZH2, in transitional cell carcinoma of the bladder. Clin Cancer Res 11(24 Pt 1):8570–8576PubMedGoogle Scholar
  60. 60.
    van Haaften G et al (2009) Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet 41(5):521–523PubMedCentralPubMedGoogle Scholar
  61. 61.
    Gui Y et al (2011) Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nat Genet 43(9):875–878PubMedGoogle Scholar
  62. 62.
    Guo G et al (2013) Whole-genome and whole-exome sequencing of bladder cancer identifies frequent alterations in genes involved in sister chromatid cohesion and segregation. Nat Genet 45(12):1459–1463PubMedGoogle Scholar
  63. 63.
    You SH et al (2013) Nuclear receptor co-repressors are required for the histone-deacetylase activity of HDAC3 in vivo. Nat Struct Mol Biol 20(2):182–187PubMedCentralPubMedGoogle Scholar
  64. 64.
    Niegisch G et al (2013) Changes in histone deacetylase (HDAC) expression patterns and activity of HDAC inhibitors in urothelial cancers. Urol Oncol 31(8):1770–1779PubMedGoogle Scholar
  65. 65.
    Fullgrabe J, Kavanagh E, Joseph B (2011) Histone onco-modifications. Oncogene 30(31):3391–3403PubMedGoogle Scholar
  66. 66.
    Wang Z et al (2009) Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138(5):1019–1031PubMedCentralPubMedGoogle Scholar
  67. 67.
    Plass C et al (2013) Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer. Nat Rev Genet 14(11):765–780PubMedGoogle Scholar
  68. 68.
    Lee KK, Workman JL (2007) Histone acetyltransferase complexes: one size doesn’t fit all. Nat Rev Mol Cell Biol 8(4):284–295PubMedGoogle Scholar
  69. 69.
    Wang F, Marshall CB, Ikura M (2013) Transcriptional/epigenetic regulator CBP/p300 in tumorigenesis: structural and functional versatility in target recognition. Cell Mol Life Sci 70(21):3989–4008PubMedGoogle Scholar
  70. 70.
    Takawa M et al (2011) Validation of the histone methyltransferase EZH2 as a therapeutic target for various types of human cancer and as a prognostic marker. Cancer Sci 102(7):1298–1305PubMedGoogle Scholar
  71. 71.
    International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431(7011):931–945Google Scholar
  72. 72.
    Birney E et al (2007) Identification and analysis of functional elements in 1 % of the human genome by the ENCODE pilot project. Nature 447(7146):799–816PubMedGoogle Scholar
  73. 73.
    Gibb EA et al (2011) Human cancer long non-coding RNA transcriptomes. PLoS One 6(10):e25915PubMedCentralPubMedGoogle Scholar
  74. 74.
    Gibb EA, Brown CJ, Lam WL (2011) The functional role of long non-coding RNA in human carcinomas. Mol Cancer 10:38PubMedCentralPubMedGoogle Scholar
  75. 75.
    Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23(13):1494–1504PubMedCentralPubMedGoogle Scholar
  76. 76.
    Khalil AM et al (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A 106(28):11667–11672PubMedCentralPubMedGoogle Scholar
  77. 77.
    Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10(3):155–159PubMedGoogle Scholar
  78. 78.
    Brannan CI et al (1990) The product of the H19 gene may function as an RNA. Mol Cell Biol 10(1):28–36PubMedCentralPubMedGoogle Scholar
  79. 79.
    Brown CJ et al (1992) The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71(3):527–542PubMedGoogle Scholar
  80. 80.
    Froberg JE, Yang L, Lee JT (2013) Guided by RNAs: X-inactivation as a model for lncRNA function. J Mol Biol 425(19):3698–3706PubMedCentralPubMedGoogle Scholar
  81. 81.
    Orom UA, Shiekhattar R (2011) Long non-coding RNAs and enhancers. Curr Opin Genet Dev 21(2):194–198PubMedCentralPubMedGoogle Scholar
  82. 82.
    Guttman M et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458(7235):223–227PubMedCentralPubMedGoogle Scholar
  83. 83.
    Cabili MN et al (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25(18):1915–1927PubMedCentralPubMedGoogle Scholar
  84. 84.
    Kung JT, Colognori D, Lee JT (2013) Long noncoding RNAs: past, present, and future. Genetics 193(3):651–669PubMedCentralPubMedGoogle Scholar
  85. 85.
    Liedtke S, Stephan M, Kogler G (2008) Oct4 expression revisited: potential pitfalls for data misinterpretation in stem cell research. Biol Chem 389(7):845–850PubMedGoogle Scholar
  86. 86.
    Wezel F et al (2013) Differential expression of Oct4 variants and pseudogenes in normal urothelium and urothelial cancer. Am J Pathol 183(4):1128–1136PubMedGoogle Scholar
  87. 87.
    Hoffmann MJ et al (2006) Epigenetic control of CTCFL/BORIS and OCT4 expression in urogenital malignancies. Biochem Pharmacol 72(11):1577–1588PubMedGoogle Scholar
  88. 88.
    Guttman M et al (2011) lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477(7364):295–300PubMedCentralPubMedGoogle Scholar
  89. 89.
    Rinn JL et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323PubMedCentralPubMedGoogle Scholar
  90. 90.
    Lee JT, Davidow LS, Warshawsky D (1999) Tsix, a gene antisense to Xist at the X-inactivation centre. Nat Genet 21(4):400–404PubMedGoogle Scholar
  91. 91.
    Chureau C et al (2002) Comparative sequence analysis of the X-inactivation center region in mouse, human, and bovine. Genome Res 12(6):894–908PubMedCentralPubMedGoogle Scholar
  92. 92.
    Cai X, Cullen BR (2007) The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA 13(3):313–316PubMedCentralPubMedGoogle Scholar
  93. 93.
    Elkin M et al (1995) The expression of the imprinted H19 and IGF-2 genes in human bladder carcinoma. FEBS Lett 374(1):57–61PubMedGoogle Scholar
  94. 94.
    Hoffmann MJ et al (2005) Multiple mechanisms downregulate CDKN1C in human bladder cancer. Int J Cancer 114(3):406–413PubMedGoogle Scholar
  95. 95.
    Dean A (2011) In the loop: long range chromatin interactions and gene regulation. Brief Funct Genomics 10(1):3–10PubMedCentralPubMedGoogle Scholar
  96. 96.
    Pearson JC, Lemons D, McGinnis W (2005) Modulating Hox gene functions during animal body patterning. Nat Rev Genet 6(12):893–904PubMedGoogle Scholar
  97. 97.
    Taft RJ et al (2010) Non-coding RNAs: regulators of disease. J Pathol 220(2):126–139PubMedGoogle Scholar
  98. 98.
    Cheetham SW et al (2013) Long noncoding RNAs and the genetics of cancer. Br J Cancer 108(12):2419–2425PubMedCentralPubMedGoogle Scholar
  99. 99.
    Gutschner T, Diederichs S (2012) The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol 9(6):703–719PubMedCentralPubMedGoogle Scholar
  100. 100.
    Qiu MT et al (2013) Long noncoding RNA: an emerging paradigm of cancer research. Tumour Biol 34(2):613–620PubMedGoogle Scholar
  101. 101.
    Zhao J et al (2010) Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol Cell 40(6):939–953PubMedCentralPubMedGoogle Scholar
  102. 102.
    Ule J et al (2005) CLIP: a method for identifying protein-RNA interaction sites in living cells. Methods 37(4):376–386PubMedGoogle Scholar
  103. 103.
    Low JT, Weeks KM (2010) SHAPE-directed RNA secondary structure prediction. Methods 52(2):150–158PubMedCentralPubMedGoogle Scholar
  104. 104.
    Weeks KM (2010) Advances in RNA structure analysis by chemical probing. Curr Opin Struct Biol 20(3):295–304PubMedCentralPubMedGoogle Scholar
  105. 105.
    Tang JY et al (2013) Long noncoding RNAs-related diseases, cancers, and drugs. ScientificWorldJournal 2013:943539PubMedCentralPubMedGoogle Scholar
  106. 106.
    Chu C, Quinn J, Chang HY (2012) Chromatin isolation by RNA purification (ChIRP). J Vis Exp 61:e3912Google Scholar
  107. 107.
    Mariner PD et al (2008) Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol Cell 29(4):499–509PubMedGoogle Scholar
  108. 108.
    Simon MD et al (2011) The genomic binding sites of a noncoding RNA. Proc Natl Acad Sci U S A 108(51):20497–20502PubMedCentralPubMedGoogle Scholar
  109. 109.
    Pandey RR et al (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 32(2):232–246PubMedGoogle Scholar
  110. 110.
    Gupta RA et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071–1076PubMedCentralPubMedGoogle Scholar
  111. 111.
    He W et al (2013) linc-UBC1 physically associates with polycomb repressive complex 2 (PRC2) and acts as a negative prognostic factor for lymph node metastasis and survival in bladder cancer. Biochim Biophys Acta 1832(10):1528–1537PubMedGoogle Scholar
  112. 112.
    Liu Z et al (2013) Downregulation of GAS5 promotes bladder cancer cell proliferation, partly by regulating CDK6. PLoS One 8(9):e73991PubMedCentralPubMedGoogle Scholar
  113. 113.
    Kim K et al (2013) HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene 32(13):1616–1625PubMedCentralPubMedGoogle Scholar
  114. 114.
    Yang Z et al (2011) Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Ann Surg Oncol 18(5):1243–1250PubMedGoogle Scholar
  115. 115.
    Sorensen KP et al (2013) Long non-coding RNA HOTAIR is an independent prognostic marker of metastasis in estrogen receptor-positive primary breast cancer. Breast Cancer Res Treat 142(3):529–536PubMedGoogle Scholar
  116. 116.
    Niinuma T et al (2012) Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors. Cancer Res 72(5):1126–1136PubMedGoogle Scholar
  117. 117.
    Nie Y et al (2013) Long non-coding RNA HOTAIR is an independent prognostic marker for nasopharyngeal carcinoma progression and survival. Cancer Sci 104(4):458–464PubMedGoogle Scholar
  118. 118.
    Nakano S et al (2006) Expression profile of LIT1/KCNQ1OT1 and epigenetic status at the KvDMR1 in colorectal cancers. Cancer Sci 97(11):1147–1154PubMedGoogle Scholar
  119. 119.
    Kawakami T et al (2003) The roles of supernumerical X chromosomes and XIST expression in testicular germ cell tumors. J Urol 169(4):1546–1552PubMedGoogle Scholar
  120. 120.
    Kawakami T et al (2004) Characterization of loss-of-inactive X in Klinefelter syndrome and female-derived cancer cells. Oncogene 23(36):6163–6169PubMedGoogle Scholar
  121. 121.
    Zhang C et al (2005) Distinctive epigenetic phenotype of cancer testis antigen genes among seminomatous and nonseminomatous testicular germ-cell tumors. Genes Chromosomes Cancer 43(1):104–112PubMedGoogle Scholar
  122. 122.
    Weakley SM et al (2011) Expression and function of a large non-coding RNA gene XIST in human cancer. World J Surg 35(8):1751–1756PubMedCentralPubMedGoogle Scholar
  123. 123.
    Yap KL et al (2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 38(5):662–674PubMedCentralPubMedGoogle Scholar
  124. 124.
    Pasmant E et al (2011) ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS. FASEB J 25(2):444–448PubMedGoogle Scholar
  125. 125.
    Timofeeva MN et al (2012) Influence of common genetic variation on lung cancer risk: meta-analysis of 14 900 cases and 29 485 controls. Hum Mol Genet 21(22):4980–4995PubMedCentralPubMedGoogle Scholar
  126. 126.
    Iacobucci I et al (2011) A polymorphism in the chromosome 9p21 ANRIL locus is associated to Philadelphia positive acute lymphoblastic leukemia. Leuk Res 35(8):1052–1059PubMedGoogle Scholar
  127. 127.
    Golka K et al (2011) Genetic variants in urinary bladder cancer: collective power of the “wimp SNPs”. Arch Toxicol 85(6):539–554PubMedGoogle Scholar
  128. 128.
    Yang L et al (2011) ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell 147(4):773–788PubMedCentralPubMedGoogle Scholar
  129. 129.
    Han Y et al (2013) Long intergenic non-coding RNA TUG1 is overexpressed in urothelial carcinoma of the bladder. J Surg Oncol 107(5):555–559PubMedGoogle Scholar
  130. 130.
    Nakagawa S, Hirose T (2012) Paraspeckle nuclear bodies–useful uselessness? Cell Mol Life Sci 69(18):3027–3036PubMedCentralPubMedGoogle Scholar
  131. 131.
    Ariel I et al (2000) The imprinted H19 gene is a marker of early recurrence in human bladder carcinoma. Mol Pathol 53(6):320–323PubMedCentralPubMedGoogle Scholar
  132. 132.
    Luo M et al (2013) Upregulated H19 contributes to bladder cancer cell proliferation by regulating ID2 expression. FEBS J 280(7):1709–1716PubMedGoogle Scholar
  133. 133.
    Luo M et al (2013) Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett 333(2):213–221PubMedGoogle Scholar
  134. 134.
    Sidi AA et al (2008) Phase I/II marker lesion study of intravesical BC-819 DNA plasmid in H19 over expressing superficial bladder cancer refractory to bacillus Calmette-Guerin. J Urol 180(6):2379–2383PubMedGoogle Scholar
  135. 135.
    Amit D, Hochberg A (2010) Development of targeted therapy for bladder cancer mediated by a double promoter plasmid expressing diphtheria toxin under the control of H19 and IGF2-P4 regulatory sequences. J Transl Med 8:134PubMedCentralPubMedGoogle Scholar
  136. 136.
    Huarte M et al (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142(3):409–419PubMedCentralPubMedGoogle Scholar
  137. 137.
    Ozgur E et al (2013) Differential expression of long non-coding RNAs during genotoxic stress-induced apoptosis in HeLa and MCF-7 cells. Clin Exp Med 13(2):119–126PubMedGoogle Scholar
  138. 138.
    Yoon JH et al (2012) LincRNA-p21 suppresses target mRNA translation. Mol Cell 47(4):648–655PubMedCentralPubMedGoogle Scholar
  139. 139.
    Zhang X et al (2003) A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J Clin Endocrinol Metab 88(11):5119–5126PubMedGoogle Scholar
  140. 140.
    Lu KH et al (2013) Long non-coding RNA MEG3 inhibits NSCLC cells proliferation and induces apoptosis by affecting p53 expression. BMC Cancer 13:461PubMedCentralPubMedGoogle Scholar
  141. 141.
    Wang P, Ren Z, Sun P (2012) Overexpression of the long non-coding RNA MEG3 impairs in vitro glioma cell proliferation. J Cell Biochem 113(6):1868–1874PubMedGoogle Scholar
  142. 142.
    Sun M et al (2013) Downregulated long noncoding RNA MEG3 is associated with poor prognosis and promotes cell proliferation in gastric cancer. Tumour Biol 35(2):1065–1073Google Scholar
  143. 143.
    Balik V et al (2013) MEG3: a novel long noncoding potentially tumour-suppressing RNA in meningiomas. J Neurooncol 112(1):1–8PubMedGoogle Scholar
  144. 144.
    Zhang X et al (2010) Maternally expressed gene 3 (MEG3) noncoding ribonucleic acid: isoform structure, expression, and functions. Endocrinology 151(3):939–947PubMedCentralPubMedGoogle Scholar
  145. 145.
    Zhou Y et al (2007) Activation of p53 by MEG3 non-coding RNA. J Biol Chem 282(34):24731–24742PubMedGoogle Scholar
  146. 146.
    Ying L et al (2013) Downregulated MEG3 activates autophagy and increases cell proliferation in bladder cancer. Mol Biosyst 9(3):407–411PubMedGoogle Scholar
  147. 147.
    Hung T et al (2011) Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet 43(7):621–629PubMedCentralPubMedGoogle Scholar
  148. 148.
    Willingham AT et al (2005) A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 309(5740):1570–1573PubMedGoogle Scholar
  149. 149.
    Liu Z et al (2011) The kinase LRRK2 is a regulator of the transcription factor NFAT that modulates the severity of inflammatory bowel disease. Nat Immunol 12(11):1063–1070PubMedCentralPubMedGoogle Scholar
  150. 150.
    Sharma S et al (2011) Dephosphorylation of the nuclear factor of activated T cells (NFAT) transcription factor is regulated by an RNA-protein scaffold complex. Proc Natl Acad Sci U S A 108(28):11381–11386PubMedCentralPubMedGoogle Scholar
  151. 151.
    Kino T et al (2010) Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 3(107):ra8PubMedCentralPubMedGoogle Scholar
  152. 152.
    Wilusz JE, Freier SM, Spector DL (2008) 3' end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell 135(5):919–932PubMedCentralPubMedGoogle Scholar
  153. 153.
    Gutschner T, Hammerle M, Diederichs S (2013) MALAT1 – a paradigm for long noncoding RNA function in cancer. J Mol Med (Berl) 91(7):791–801Google Scholar
  154. 154.
    Ji P et al (2003) MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22(39):8031–8041PubMedGoogle Scholar
  155. 155.
    Gutschner T, Baas M, Diederichs S (2011) Noncoding RNA gene silencing through genomic integration of RNA destabilizing elements using zinc finger nucleases. Genome Res 21(11):1944–1954PubMedCentralPubMedGoogle Scholar
  156. 156.
    Sarma K et al (2010) Locked nucleic acids (LNAs) reveal sequence requirements and kinetics of Xist RNA localization to the X chromosome. Proc Natl Acad Sci U S A 107(51):22196–22201PubMedCentralPubMedGoogle Scholar
  157. 157.
    Ying L et al (2012) Upregulated MALAT-1 contributes to bladder cancer cell migration by inducing epithelial-to-mesenchymal transition. Mol Biosyst 8(9):2289–2294PubMedGoogle Scholar
  158. 158.
    Han Y et al (2013) Inducing cell proliferation inhibition, apoptosis, and motility reduction by silencing long noncoding ribonucleic acid metastasis-associated lung adenocarcinoma transcript 1 in urothelial carcinoma of the bladder. Urology 81(1):209 e1–7Google Scholar
  159. 159.
    Eißmann M et al (2012) Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development. RNA Biol 9(8):1076–1087Google Scholar
  160. 160.
    Zhang B et al (2012) The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep 2(1):111–123PubMedCentralPubMedGoogle Scholar
  161. 161.
    Grippo PJ, Sandgren EP (2000) Highly invasive transitional cell carcinoma of the bladder in a simian virus 40T-antigen transgenic mouse model. Am J Pathol 157(3):805–813PubMedCentralPubMedGoogle Scholar
  162. 162.
    Poliseno L et al (2010) Identification of the miR-106b ~ 25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci Signal 3(117):ra29PubMedCentralPubMedGoogle Scholar
  163. 163.
    Johnsson P et al (2013) A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat Struct Mol Biol 20(4):440–446PubMedCentralPubMedGoogle Scholar
  164. 164.
    Zhang Q et al (2013) The complexity of bladder cancer: long noncoding RNAs are on the stage. Mol Cancer 12(1):101PubMedCentralPubMedGoogle Scholar
  165. 165.
    Sharron Lin X et al (2013) Differentiating progressive from nonprogressive T1 bladder cancer by gene expression profiling: Applying RNA-sequencing analysis on archived specimens. Urol Oncol 32(3):327–336Google Scholar
  166. 166.
    Wang XS et al (2006) Rapid identification of UCA1 as a very sensitive and specific unique marker for human bladder carcinoma. Clin Cancer Res 12(16):4851–4858PubMedGoogle Scholar
  167. 167.
    Wang F et al (2008) UCA1, a non-protein-coding RNA up-regulated in bladder carcinoma and embryo, influencing cell growth and promoting invasion. FEBS Lett 582(13):1919–1927PubMedGoogle Scholar
  168. 168.
    Yang C et al (2012) Long non-coding RNA UCA1 regulated cell cycle distribution via CREB through PI3-K dependent pathway in bladder carcinoma cells. Gene 496(1):8–16PubMedGoogle Scholar
  169. 169.
    Wu W et al (2013) Ets-2 regulates cell apoptosis via the Akt pathway, through the regulation of urothelial cancer associated 1, a long non-coding RNA, in bladder cancer cells. PLoS One 8(9):e73920PubMedCentralPubMedGoogle Scholar
  170. 170.
    Wang Y et al (2012) Long non-coding RNA UCA1a(CUDR) promotes proliferation and tumorigenesis of bladder cancer. Int J Oncol 41(1):276–284PubMedGoogle Scholar
  171. 171.
    Yu M et al (2009) High expression of ncRAN, a novel non-coding RNA mapped to chromosome 17q25.1, is associated with poor prognosis in neuroblastoma. Int J Oncol 34(4):931–938PubMedGoogle Scholar
  172. 172.
    Zhu Y et al (2011) ncRAN, a newly identified long noncoding RNA, enhances human bladder tumor growth, invasion, and survival. Urology 77(2):510 e1–5Google Scholar
  173. 173.
    Rivas A et al (2012) Determination of the differential expression of mitochondrial long non-coding RNAs as a noninvasive diagnosis of bladder cancer. BMC Urol 12:37PubMedCentralPubMedGoogle Scholar
  174. 174.
    Van Tilborg AA, Bangma CH, Zwarthoff EC (2009) Bladder cancer biomarkers and their role in surveillance and screening. Int J Urol 16(1):23–30PubMedGoogle Scholar
  175. 175.
    de la Taille A (2007) Progensa PCA3 test for prostate cancer detection. Expert Rev Mol Diagn 7(5):491–497PubMedGoogle Scholar
  176. 176.
    Tsai MC, Spitale RC, Chang HY (2011) Long intergenic noncoding RNAs: new links in cancer progression. Cancer Res 71(1):3–7PubMedCentralPubMedGoogle Scholar
  177. 177.
    Schmittgen TD (2008) Regulation of microRNA processing in development, differentiation and cancer. J Cell Mol Med 12(5B):1811–1819PubMedCentralPubMedGoogle Scholar
  178. 178.
    Catto JW et al (2009) Distinct microRNA alterations characterize high- and low-grade bladder cancer. Cancer Res 69(21):8472–8481PubMedCentralPubMedGoogle Scholar
  179. 179.
    Han Y et al (2013) Inducing cell proliferation inhibition and apoptosis via silencing Dicer, Drosha, and Exportin 5 in urothelial carcinoma of the bladder. J Surg Oncol 107(2):201–205PubMedGoogle Scholar
  180. 180.
    Wu D et al (2012) Downregulation of Dicer, a component of the microRNA machinery, in bladder cancer. Mol Med Rep 5(3):695–699PubMedGoogle Scholar
  181. 181.
    Aravin A, Tuschl T (2005) Identification and characterization of small RNAs involved in RNA silencing. FEBS Lett 579(26):5830–5840PubMedGoogle Scholar
  182. 182.
    Creighton CJ, Reid JG, Gunaratne PH (2009) Expression profiling of microRNAs by deep sequencing. Brief Bioinform 10(5):490–497PubMedCentralPubMedGoogle Scholar
  183. 183.
    Meyer SU, Pfaffl MW, Ulbrich SE (2010) Normalization strategies for microRNA profiling experiments: a ‘normal’ way to a hidden layer of complexity? Biotechnol Lett 32(12):1777–1788PubMedGoogle Scholar
  184. 184.
    Benes V, Castoldi M (2010) Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods 50(4):244–249PubMedGoogle Scholar
  185. 185.
    Farazi TA et al (2013) MicroRNAs in human cancer. Adv Exp Med Biol 774:1–20PubMedCentralPubMedGoogle Scholar
  186. 186.
    Dijkstra JR et al (2012) MicroRNA expression in formalin-fixed paraffin embedded tissue using real time quantitative PCR: the strengths and pitfalls. J Cell Mol Med 16(4):683–690PubMedGoogle Scholar
  187. 187.
    Bitzer M et al (2012) Quantitative analysis of miRNA expression in epithelial cells and tissues. Methods Mol Biol 820:55–70PubMedGoogle Scholar
  188. 188.
    Tan Gana NH, Victoriano AF, Okamoto T (2012) Evaluation of online miRNA resources for biomedical applications. Genes Cells 17(1):11–27PubMedGoogle Scholar
  189. 189.
    Zabolotneva AA et al (2013) A systematic experimental evaluation of microRNA markers of human bladder cancer. Front Genet 4:247PubMedCentralPubMedGoogle Scholar
  190. 190.
    Fendler A et al (2011) MicroRNAs as regulators of signal transduction in urological tumors. Clin Chem 57(7):954–968PubMedGoogle Scholar
  191. 191.
    Nicoloso MS et al (2009) MicroRNAs–the micro steering wheel of tumour metastases. Nat Rev Cancer 9(4):293–302PubMedGoogle Scholar
  192. 192.
    Baffa R et al (2009) MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets. J Pathol 219(2):214–221PubMedGoogle Scholar
  193. 193.
    Ostenfeld MS et al (2010) miR-145 induces caspase-dependent and -independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors. Oncogene 29(7):1073–1084PubMedGoogle Scholar
  194. 194.
    Adam L et al (2009) miR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy. Clin Cancer Res 15(16):5060–5072PubMedGoogle Scholar
  195. 195.
    Wiklund ED et al (2011) Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int J Cancer 128(6):1327–1334PubMedGoogle Scholar
  196. 196.
    Kunej T et al (2011) Epigenetic regulation of microRNAs in cancer: an integrated review of literature. Mutat Res 717(1–2):77–84PubMedGoogle Scholar
  197. 197.
    Guancial EA et al (2014) The evolving understanding of microRNA in bladder cancer. Urol Oncol 32(1):41 e31–40Google Scholar
  198. 198.
    Li X et al (2011) Comparative mRNA and microRNA expression profiling of three genitourinary cancers reveals common hallmarks and cancer-specific molecular events. PLoS One 6(7):e22570PubMedCentralPubMedGoogle Scholar
  199. 199.
    Catto JW et al (2011) MicroRNA in prostate, bladder, and kidney cancer: a systematic review. Eur Urol 59(5):671–681PubMedGoogle Scholar
  200. 200.
    Schaefer A et al (2010) MicroRNAs and cancer: current state and future perspectives in urologic oncology. Urol Oncol 28(1):4–13PubMedGoogle Scholar
  201. 201.
    Dyrskjot L et al (2009) Genomic profiling of microRNAs in bladder cancer: miR-129 is associated with poor outcome and promotes cell death in vitro. Cancer Res 69(11):4851–4860PubMedGoogle Scholar
  202. 202.
    Veerla S et al (2009) MiRNA expression in urothelial carcinomas: important roles of miR-10a, miR-222, miR-125b, miR-7 and miR-452 for tumor stage and metastasis, and frequent homozygous losses of miR-31. Int J Cancer 124(9):2236–2242PubMedGoogle Scholar
  203. 203.
    Ichimi T et al (2009) Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J Cancer 125(2):345–352PubMedGoogle Scholar
  204. 204.
    Allen KE, Weiss GJ (2010) Resistance may not be futile: microRNA biomarkers for chemoresistance and potential therapeutics. Mol Cancer Ther 9(12):3126–3136PubMedGoogle Scholar
  205. 205.
    Wang Z et al (2010) Targeting miRNAs involved in cancer stem cell and EMT regulation: an emerging concept in overcoming drug resistance. Drug Resist Updat 13(4–5):109–118PubMedCentralPubMedGoogle Scholar
  206. 206.
    Vinall RL et al (2012) MiR-34a chemosensitizes bladder cancer cells to cisplatin treatment regardless of p53-Rb pathway status. Int J Cancer 130(11):2526–2538PubMedGoogle Scholar
  207. 207.
    Nordentoft I et al (2012) miRNAs associated with chemo-sensitivity in cell lines and in advanced bladder cancer. BMC Med Genomics 5:40PubMedCentralPubMedGoogle Scholar
  208. 208.
    Tao J et al (2011) microRNA-21 modulates cell proliferation and sensitivity to doxorubicin in bladder cancer cells. Oncol Rep 25(6):1721–1729PubMedGoogle Scholar
  209. 209.
    Kozinn SI et al (2013) MicroRNA profile to predict gemcitabine resistance in bladder carcinoma cell lines. Genes Cancer 4(1–2):61–69PubMedCentralPubMedGoogle Scholar
  210. 210.
    Uchino K et al (2013) Therapeutic effects of microRNA-582-5p and -3p on the inhibition of bladder cancer progression. Mol Ther 21(3):610–619PubMedCentralPubMedGoogle Scholar
  211. 211.
    Liu Y et al (2012) Synthetic miRNA-mowers targeting miR-183-96-182 cluster or miR-210 inhibit growth and migration and induce apoptosis in bladder cancer cells. PLoS One 7(12):e52280PubMedCentralPubMedGoogle Scholar
  212. 212.
    Ru Y, Dancik GM, Theodorescu D (2011) Biomarkers for prognosis and treatment selection in advanced bladder cancer patients. Curr Opin Urol 21(5):420–427PubMedCentralPubMedGoogle Scholar
  213. 213.
    Wittmann J, Jack HM (2010) Serum microRNAs as powerful cancer biomarkers. Biochim Biophys Acta 1806(2):200–207PubMedGoogle Scholar
  214. 214.
    Allegra A et al (2012) Circulating microRNAs: new biomarkers in diagnosis, prognosis and treatment of cancer (review). Int J Oncol 41(6):1897–1912PubMedGoogle Scholar
  215. 215.
    Duijvesz D et al (2011) Exosomes as biomarker treasure chests for prostate cancer. Eur Urol 59(5):823–831PubMedGoogle Scholar
  216. 216.
    Weiland M et al (2012) Small RNAs have a large impact: circulating microRNAs as biomarkers for human diseases. RNA Biol 9(6):850–859PubMedGoogle Scholar
  217. 217.
    Roos PH, Jakubowski N (2010) Methods for the discovery of low-abundance biomarkers for urinary bladder cancer in biological fluids. Bioanalysis 2(2):295–309PubMedGoogle Scholar
  218. 218.
    Tolle A et al (2013) Identification of microRNAs in blood and urine as tumour markers for the detection of urinary bladder cancer. Oncol Rep 30(4):1949–1956PubMedGoogle Scholar
  219. 219.
    Mlcochova H et al (2014) Urine microRNAs as potential noninvasive biomarkers in urologic cancers. Urol Oncol 32(1):41 e1–9Google Scholar
  220. 220.
    Hanke M et al (2010) A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol 28(6):655–661PubMedGoogle Scholar
  221. 221.
    Snowdon J et al (2012) A pilot study of urinary microRNA as a biomarker for urothelial cancer. Can Urol Assoc J 15:1–5Google Scholar
  222. 222.
    Miah S et al (2012) An evaluation of urinary microRNA reveals a high sensitivity for bladder cancer. Br J Cancer 107(1):123–128PubMedCentralPubMedGoogle Scholar
  223. 223.
    Kohler CU et al (2013) Analyses in human urothelial cells identify methylation of miR-152, miR-200b and miR-10a genes as candidate bladder cancer biomarkers. Biochem Biophys Res Commun 438(1):48–53PubMedGoogle Scholar
  224. 224.
    Fendler A, Jung K (2013) MicroRNAs as new diagnostic and prognostic biomarkers in urological tumors. Crit Rev Oncog 18(4):289–302PubMedGoogle Scholar
  225. 225.
    Wang KC et al (2011) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472(7341):120–124PubMedCentralPubMedGoogle Scholar
  226. 226.
    Quagliata L et al (2013) lncRNA HOTTIP / HOXA13 expression is associated with disease progression and predicts outcome in hepatocellular carcinoma patients. Hepatology 59(3):911–923Google Scholar
  227. 227.
    Poliseno L et al (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465(7301):1033–1038PubMedCentralPubMedGoogle Scholar
  228. 228.
    Eissmann M et al (2012) Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development. RNA Biol 9(8):1076–1087PubMedCentralPubMedGoogle Scholar
  229. 229.
    Nakagawa S et al (2012) Malat1 is not an essential component of nuclear speckles in mice. RNA 18(8):1487–1499PubMedCentralPubMedGoogle Scholar
  230. 230.
    Mitsuya K et al (1999) LIT1, an imprinted antisense RNA in the human KvLQT1 locus identified by screening for differentially expressed transcripts using monochromosomal hybrids. Hum Mol Genet 8(7):1209–1217PubMedGoogle Scholar
  231. 231.
    Monnier P et al (2013) H19 lncRNA controls gene expression of the Imprinted Gene Network by recruiting MBD1. Proc Natl Acad Sci U S A 110(51):20693–20698PubMedCentralPubMedGoogle Scholar
  232. 232.
    Tsai MC et al (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329(5992):689–693PubMedCentralPubMedGoogle Scholar
  233. 233.
    He X et al (2014) The long non-coding RNA HOTAIR is upregulated in endometrial carcinoma and correlates with poor prognosis. Int J Mol Med 33(2):325–332PubMedGoogle Scholar
  234. 234.
    Li CH, Chen Y (2013) Targeting long non-coding RNAs in cancers: progress and prospects. Int J Biochem Cell Biol 45(8):1895–1910PubMedGoogle Scholar
  235. 235.
    Zhou Y, Zhang X, Klibanski A (2012) MEG3 noncoding RNA: a tumor suppressor. J Mol Endocrinol 48(3):R45–R53PubMedCentralPubMedGoogle Scholar
  236. 236.
    Wylie AA et al (2000) Novel imprinted DLK1/GTL2 domain on human chromosome 14 contains motifs that mimic those implicated in IGF2/H19 regulation. Genome Res 10(11):1711–1718PubMedCentralPubMedGoogle Scholar
  237. 237.
    Brown CJ et al (1991) Localization of the X inactivation centre on the human X chromosome in Xq13. Nature 349(6304):82–84PubMedGoogle Scholar
  238. 238.
    Engreitz JM et al (2013) The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341(6147):1237973PubMedCentralPubMedGoogle Scholar
  239. 239.
    Cusanelli E, Romero CA, Chartrand P (2013) Telomeric noncoding RNA TERRA is induced by telomere shortening to nucleate telomerase molecules at short telomeres. Mol Cell 51(6):780–791PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Wolfgang A. Schulz
    • 1
    Email author
  • Evangelia A. Koutsogiannouli
    • 1
  • Günter Niegisch
    • 2
  • Michèle J. Hoffmann
    • 1
  1. 1.Department of UrologyHeinrich Heine UniversityDüsseldorfGermany
  2. 2.Department of UrologyHeinrich Heine UniversityDüsseldorfGermany

Personalised recommendations