Skip to main content

Choice of Next-Generation Sequencing Pipelines

  • Protocol
Bacterial Pangenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1231))

Abstract

The next-generation sequencing (NGS) technologies are revolutionary tools which have made possible achieving remarkable advances in genetics since the beginning of the twenty-first century. Thanks to the possibility to produce large amount of sequence data, these tools are going to completely substitute other high-throughput technologies. Moreover, the large applications of NGS protocols are increasing the genetic decoding of biological systems through studies of genome anatomy and gene mapping, coupled to the transcriptome pictures. The application of NGS pipelines such as (1) de-novo genomic sequencing by mate-paired and whole-genome shotgun strategies; (2) specific gene sequencing on large bacterial communities; and (3) RNA-seq methods including whole transcriptome sequencing and Serial Analysis of Gene Expression (Sage-analysis) are fundamental in the genome-wide fields like metagenomics. Recently, the availability of these advanced protocols has allowed to overcome the usual sequencing technical issues related to the mapping specificity over standard shotgun library sequencing, the detection of large structural genomes variations and bridging sequencing gaps, as well as more precise gene annotation. In this chapter we will discuss how to manage a successful NGS pipeline from the planning of sequencing projects through the choice of the platforms up to the data analysis management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luo G, Wang W, Angelidaki I (2013) Anaerobic digestion for simultaneous sewage sludge treatment and CO biomethanation: process performance and microbial ecology. Environ Sci Technol 47:10685–10693

    CAS  PubMed  Google Scholar 

  2. Salipante SJ, Sengupta DJ, Hoogestraat DR et al (2013) Molecular diagnosis of Actinomadura madurae infection by 16S rRNA deep sequencing. J Clin Microbiol 51:4262–4265

    Article  PubMed  PubMed Central  Google Scholar 

  3. Salipante SJ, Sengupta DJ, Rosenthal C et al (2013) Rapid 16S rRNA next-generation sequencing clinical of polymicrobial samples for diagnosis of complex bacterial infections. PLoS One. doi:10.1371/journal.pone.0065226

    PubMed  PubMed Central  Google Scholar 

  4. Thomas T, Gilbert J, Meyer F (2012) Metagenomics—a guide from sampling to data analysis. Microb Inform Exp. doi:10.1186/2042-5783-2-3

    PubMed  PubMed Central  Google Scholar 

  5. Luo C, Tsementzi D, Kyrpides N et al (2012) Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample. PLoS One. doi:10.1371/journal.pone.0030087

    Google Scholar 

  6. Schatz MC, Delcher AL, Salzberg SL et al (2010) Assembly of large genomes using second-generation sequencing. Genome Res 20:1165–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Powers JG, Weigman VJ, Shu J et al (2013) Efficient and accurate whole genome assembly and methylome profiling of E. coli. BMC Genomics 14:675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Durfee T, Nelson R, Baldwin S et al (2008) The complete genome sequence of Escherichia coli DH10B: insights into the biology of a laboratory workhorse. J Bacteriol 190:2597–2606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jucá Ramos RT, Ribeiro Carneiro A, De Castro Soares S et al (2013) High efficiency application of a mate-paired library from next-generation sequencing to postlight sequencing: Corynebacterium pseudotuberculosis as a case study for microbial de novo genome assembly. J Microbiol Methods 95:441–447

    Article  Google Scholar 

  10. Milani C, Hevia A, Foroni E et al (2013) Assessing the fecal microbiota: an optimized ion torrent 16S rRNA gene-based analysis protocol. PLoS One. doi:10.1371/journal.pone.0068739

    Google Scholar 

  11. White AG, Watts GS, Lu Z et al (2014) Environmental arsenic exposure and microbiota in induced sputum. Int J Environ Res Public Health 21:2299–2313

    Article  Google Scholar 

  12. Hasman H, Saputra D, Sicheritz-Ponten T et al (2014) Rapid whole-genome sequencing for detection and characterization of microorganisms directly from clinical samples. J Clin Microbiol 52:139–146

    Article  PubMed  PubMed Central  Google Scholar 

  13. Van Hal SJ, Steen JA, Espedido BA et al (2014) In vivo evolution of antimicrobial resistance in a series of Staphylococcus aureus patient isolates: the entire picture or a cautionary tale? J Antimicrob Chemother 69:363–367

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tyakht AV, Kostryukova ES, Popenko AS et al (2013) Human gut microbiota community structures in urban and rural populations in Russia. Nat Commun. doi:10.1038/ncomms3469

    PubMed  PubMed Central  Google Scholar 

  15. Zhang T, Zhang XX, Ye L (2011) Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge. PLoS One. doi:10.1371/journal.pone.0026041

    Google Scholar 

  16. Lai Z, Zou Y, Kane NC et al (2012) Preparation of normalized cDNA libraries for 454 Titanium transcriptome sequencing. Methods Mol Biol 888:119–133

    Article  PubMed  Google Scholar 

  17. Wan M, Faruq J, Rosenberg JN et al (2013) Achieving high throughput sequencing of a cDNA library utilizing an alternative protocol for the bench top next-generation sequencing system. J Microbiol Methods 92:122–126

    Article  CAS  PubMed  Google Scholar 

  18. Chaisson MJ, Pevzner PA (2008) Short read fragment assembly of bacterial genomes. Genome Res 18:324–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rodrigue S, Materna AC, Timberlake SC et al (2010) Unlocking short read sequencing for metagenomics. PLoS One. doi:10.1371/journal.pone.0011840

    PubMed  PubMed Central  Google Scholar 

  20. Umemura M, Koyama Y, Takeda I (2013) Fine de novo sequencing of a fungal genome using only SOLiD short read data: verification on Aspergillus oryzae RIB40. PLoS One. doi:10.1371/journal.pone.0063673

    Google Scholar 

  21. Ancora M, Marcacci M, Orsini M et al (2014) Complete genome sequence of a Brucella ceti ST26 strain isolated from a striped Dolphin (Stenella coeruleoalba) on the coast of Italy. Genome Announc. doi:10.1128/genomeA.00068-14

    Google Scholar 

  22. Merriman B, Ion Torrent R&D Team, Rothberg JM (2012) Progress in ion torrent semiconductor chip based sequencing. Electrophoresis 33:397–417

    Article  Google Scholar 

  23. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chain PSG, Grafham DV, Fulton RS et al (2009) Genome project standards in a new era of sequencing. Science 326:236–237

    Article  CAS  PubMed  Google Scholar 

  25. Toledo-Arana A, Repoila F, Cossart P (2007) Small noncoding RNAs controlling pathogenesis. Curr Opin Microbiol 10:182–188

    Article  CAS  PubMed  Google Scholar 

  26. Pierlé SA, Dark MJ, Dahmen D et al (2012) Comparative genomics and transcriptomics of trait-gene association. BMC Genomics 13:669

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pinto AC, Melo-Barbosa HP, Miyoshi A et al (2011) Application of RNA-seq to reveal the transcript profile in bacteria. Genet Mol Res 10:1707–1718

    Article  CAS  PubMed  Google Scholar 

  29. Parkhomchuk D, Borodina T, Amstislavskiy V et al (2009) Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Res 37:e123

    Article  PubMed  PubMed Central  Google Scholar 

  30. Westermann AJ, Gorski SA, Vogel J (2012) Dual RNA-seq of pathogen and host. Nat Rev Microbiol 10:618–630

    Article  CAS  PubMed  Google Scholar 

  31. Sharma CM, Hoffmann S, Darfeuille F et al (2010) The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464:250–255

    Article  CAS  PubMed  Google Scholar 

  32. Cox ML, Eddy SM, Stewart ZS et al (2008) Investigating fixative-induced changes in RNA quality and utility by microarray analysis. Exp Mol Pathol 84:156–172

    Article  CAS  PubMed  Google Scholar 

  33. Armour CD, Castle JC, Chen R et al (2009) Digital transcriptome profiling using selective hexamer priming for cDNA synthesis. Nat Methods 6:647–649

    Article  CAS  PubMed  Google Scholar 

  34. Giannoukos G, Ciulla DM, Huang K et al (2012) Efficient and robust RNA-seq process for cultured bacteria and complex community transcriptomes. Genome Biol 13:R23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McIntyre LM, Lopiano KK, Morse AM et al (2011) RNA-seq: technical variability and sampling. BMC Genomics 12:293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jiang L, Schlesinger F, Davis CA et al (2011) Synthetic spike-in standards for RNA-seq experiments. Genome Res 21:1543–1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Del Chierico F, Gnani D, Vernocchi P et al (2014) Meta-omic platforms to assist in the understanding of NAFLD gut microbiota alterations: tools and applications. Int J Mol Sci 15:684–711

    Article  PubMed  PubMed Central  Google Scholar 

  38. Janda JM, Abbott SL (2007) 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol 45:2761–2764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chakravorty S, Helb D, Burday M et al (2007) A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J Microbiol Methods 69:330–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Patel JB (2001) 16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory. Mol Diagn 6:313–321

    Article  CAS  PubMed  Google Scholar 

  41. Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214

    Article  Google Scholar 

  43. Amir A, Zeisel A, Zuk O et al (2013) High-resolution microbial community reconstruction by integrating short reads from multiple 16S rRNA regions. Nucleic Acids Res 41:e205. doi:10.1093/nar/gkt1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang Q, Garrity GM, Tiedje JM et al (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kuczynski J, Lauber CL, Walters WA et al (2012) Experimental and analytical tools for studying the human microbiome. Nat Rev Genet 13:47–58

    Article  CAS  Google Scholar 

  46. Peterson DA, Frank DN, Pace NR et al (2008) Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. Cell Host Microbe 3:417–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cole JR, Chai B, Farris RJ et al (2007) The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 35:D169–D172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a chimerachecked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pruesse E, Quast C, Knittel K et al (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Petrosino JF, Highlander S, Luna RA et al (2009) Metagenomic pyrosequencing and microbial identification. Clin Chem 55:856–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Conti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Del Chierico, F., Ancora, M., Marcacci, M., Cammà, C., Putignani, L., Conti, S. (2015). Choice of Next-Generation Sequencing Pipelines. In: Mengoni, A., Galardini, M., Fondi, M. (eds) Bacterial Pangenomics. Methods in Molecular Biology, vol 1231. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1720-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1720-4_3

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1719-8

  • Online ISBN: 978-1-4939-1720-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics